this post was submitted on 13 Nov 2023
124 points (98.4% liked)

Space

8919 readers
33 users here now

Share & discuss informative content on: Astrophysics, Cosmology, Space Exploration, Planetary Science and Astrobiology.


Rules

  1. Be respectful and inclusive.
  2. No harassment, hate speech, or trolling.
  3. Engage in constructive discussions.
  4. Share relevant content.
  5. Follow guidelines and moderators' instructions.
  6. Use appropriate language and tone.
  7. Report violations.
  8. Foster a continuous learning environment.

Picture of the Day

The Busy Center of the Lagoon Nebula


Related Communities

πŸ”­ Science

πŸš€ Engineering

🌌 Art and Photography


Other Cool Links

founded 2 years ago
MODERATORS
top 33 comments
sorted by: hot top controversial new old
[–] [email protected] 35 points 1 year ago (1 children)

Pfft just wait until night time when the sun goes out.

[–] [email protected] 16 points 1 year ago (1 children)

Don't be daft, that isn't how it works. When it is night then the moon will be in the way.

[–] [email protected] 3 points 1 year ago

Twilight may work then. They just need to thread the needle using beam-forming to ensure the comms make it past those pesky celestial bodies.

[–] threelonmusketeers 14 points 1 year ago (4 children)

Can we put some relay satellites at the L4 and L5 Lagrange points already? It seems like something we should have done years ago...

[–] [email protected] 14 points 1 year ago (1 children)

Can we? Yes. Should we do it right now? That's debatable.

The question is how much this would cost vs getting a two weeks offline every 26 months?

These two weeks do not create any additional requirements (you already have to make sure the probes can survive for a few weeks without comms), science does not fully stops during these two weeks. And it gives an opportunity to do long duration maintenance on the ground segment.

Frankly, there is little need to spend >$100M for such relays satellites until we actually have a permanent human presence on Mars.

[–] [email protected] 4 points 1 year ago (1 children)

Even when we have a permanent human presence on Mars, there isn't a great necessity to maintain contact for those two weeks. Even if something goes wrong, it's not like anyone could send help. Essentially it would be just so we knew what was going on, but that's not really a full time requirement.

[–] [email protected] 2 points 1 year ago* (last edited 1 year ago) (1 children)

You've for the start of a sci Fi movie there : Mars comes out from behind the sun to find communication from Earth has stopped

[–] [email protected] 1 points 1 year ago

Marvin got his hands on the Q35 space modulater didn't he?

[–] [email protected] 7 points 1 year ago (3 children)

The problem you face with that idea is that the satellites will have to have enough power to retransmit signals.

While the Mars > L3/L4 > Earth route is not much of an issue as the large receivers on earth can deal with a small power output at Lagrange. A signal moving in the other direction will have to be quite powerful to reach the small receivers on the Mars end.

[–] [email protected] 4 points 1 year ago

Looks to me like a perfectly good reason to devote a few extra trillions to the public space program

[–] [email protected] 1 points 1 year ago (2 children)

"would have to be quite powerful" doesn't mean it's not feasible?

[–] [email protected] 6 points 1 year ago (1 children)

Pretty much. For it to be effective as a relay it would need some large dishes and a large power supply (large solar array) plus a good amount of propellant for station keeping.

So it would be a quite expensive option when it is only really required for a few weeks a year.

Also with the mass it would likely have to be I doubt there was a heavy lift rocket that could do the job in recent times until Falcon Heavy came along.

[–] threelonmusketeers 1 points 1 year ago (1 children)

plus a good amount of propellant for station keeping

Aren't L4 and L5 naturally stable points? A large propellant budget shouldn't be required for station keeping.

[–] [email protected] 2 points 1 year ago* (last edited 1 year ago) (1 children)

They are much more stable than other locations but are not completely stable, so station keeping is required. In a theoretical two body system Lagrange points would be perfectly stable but that is not the case with the solar system. Eg: The orbit of the moon ever so slightly effects the Sun - Earth Lagrange points.

The JWST is a good example. The expected observational lifespan of the telescope is based on how long it is able to remain at L2.

NASA Says Webb’s Excess Fuel Likely to Extend its Lifetime Expectations

[–] threelonmusketeers 1 points 1 year ago* (last edited 1 year ago)

The JWST is a good example. The expected observational lifespan of the telescope is based on how long it is able to remain at L2.

I thought L1, L2, and L3 were unstable but L4 and L5 were stable. Hence why asteroids and other detritus tend to collect at L4/L5.

Edit: Huh, it looks like the stability of L4 and L5 are dependent on the mass ratio of the two bodies. The ratio works out for the Sun-Earth system, so it should also work for the Sun-Mars system.

[–] [email protected] 3 points 1 year ago (1 children)

But is it necessary?

If Musk ever gets to Mars the lack of communication for two weeks will be the best part of the project.

[–] Jay 3 points 1 year ago (1 children)

They should try something with magnets.

[–] [email protected] 3 points 1 year ago (1 children)

I want to agree with this but I don't know enough about how magnets work to reasonably dispute it

[–] Jay 3 points 1 year ago

No one knows. That's why we should try.

[–] threelonmusketeers 1 points 1 year ago

L3

Did you mean L5? L3 is always in line with the sun, so it doesn't seem like it would be useful for communication.

A signal moving in the other direction will have to be quite powerful to reach the small receivers on the Mars end.

Would it be easier to have a separate satellite for each direction, one at the Earth-Sun L4 point, and one at the Mars-Sun L4 point? Could we get a large enough dish to the Earth-Sun L4 point?

Alternatively, could we use lasers instead of radio? The SpaceX Starlink satellites have laser inter-links, and NASA just sent up the ILLUMA-T payload to the ISS last week.

[–] [email protected] 4 points 1 year ago

There's no pressing time urgency. It's okay to wait 2 weeks so yeah we could but it's an enormous expense and not worth it

[–] [email protected] 2 points 1 year ago (1 children)

We use very large radio dishes to communicate with craft at Mars, so that the spacecraft can use smaller dishes and less power. In order to add a relay at L4/L5, that relay would also need very large dishes and high power usage to reach the craft at Mars. Probably larger than anything we have in earth orbit today.

[–] threelonmusketeers 1 points 1 year ago (1 children)

Could we use lasers instead of radio, like the Starlink laser inter-links or the NASA ILLUMA-T/LCRD demonstration?

[–] [email protected] 2 points 1 year ago

Maybe in the future, but the existing Mars orbiters need to hear a strong radio signal. And laser communication has not yet been tested outside of Earth orbit. It will need to be significantly scaled up to handle the 2-3AU distance.

[–] [email protected] 11 points 1 year ago (1 children)

"My dear robots - we must not talk. We are being eavesdropped.
Let us contact later!"

[–] threelonmusketeers 2 points 1 year ago* (last edited 1 year ago) (1 children)

Is this a reference to young lovers of Victorian England communicating via encrypted messages via the personal columns in newspapers?

These β€œagony columns,” as they became known, provoked the curiosity of cryptanalysts, who would scan the notes and try to decipher their titillating contents. Charles Babbage is known to have indulged in this activity, along with his friends Sir Charles Wheatstone and Baron Lyon Playfair, who together were responsible for developing the deft Playfair cipher (described in Appendix E).

On one occasion, Wheatstone deciphered a note in The Times from an Oxford student, suggesting to his true love that they elope. A few days later, Wheatstone inserted his own message, encrypted in the same cipher, advising the couple against this rebellious and rash action. Shortly afterward there appeared a third message, this time unencrypted and from the lady in question: β€œDear Charlie, Write no more. Our cipher is discovered.”

The Code Book, by Simon Singh (page 80)

[–] [email protected] 2 points 1 year ago* (last edited 1 year ago)

Hehe. I didn't think of any references.

Glad that you experienced an association though!

[–] [email protected] 7 points 1 year ago

I hate when that happens.

[–] [email protected] 3 points 1 year ago

Ah, earths dating a single mom satellite,huh?

[–] [email protected] 2 points 1 year ago (1 children)
[–] captain_aggravated 2 points 1 year ago (1 children)

There are two kinds of days: slow news days, and tragedies. Which do you prefer? It gets worse, or it stays the same.

[–] [email protected] 2 points 1 year ago (1 children)

That’s rather pessimistic but I’m not in a state of mind to have a rebuttal

[–] captain_aggravated 1 points 1 year ago

A school gets shot up, or it doesn't. Another genocide starts, or it doesn't. A telescope collapses, or it doesn't. It gets worse, or it stays the same. Not once in all my life has the evening news been like "This just in: A clean, abundant and inexpensive source of energy has been found which is leading to millions of hungry people being fed. We now go on location to ABC correspondent Tish Yu for the details."