124
this post was submitted on 13 Nov 2023
124 points (98.4% liked)
Space
8919 readers
33 users here now
Share & discuss informative content on: Astrophysics, Cosmology, Space Exploration, Planetary Science and Astrobiology.
Rules
- Be respectful and inclusive.
- No harassment, hate speech, or trolling.
- Engage in constructive discussions.
- Share relevant content.
- Follow guidelines and moderators' instructions.
- Use appropriate language and tone.
- Report violations.
- Foster a continuous learning environment.
Picture of the Day
The Busy Center of the Lagoon Nebula
Related Communities
🔭 Science
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
🚀 Engineering
🌌 Art and Photography
Other Cool Links
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
They are much more stable than other locations but are not completely stable, so station keeping is required. In a theoretical two body system Lagrange points would be perfectly stable but that is not the case with the solar system. Eg: The orbit of the moon ever so slightly effects the Sun - Earth Lagrange points.
The JWST is a good example. The expected observational lifespan of the telescope is based on how long it is able to remain at L2.
NASA Says Webb’s Excess Fuel Likely to Extend its Lifetime Expectations
I thought L1, L2, and L3 were unstable but L4 and L5 were stable. Hence why asteroids and other detritus tend to collect at L4/L5.
Edit: Huh, it looks like the stability of L4 and L5 are dependent on the mass ratio of the two bodies. The ratio works out for the Sun-Earth system, so it should also work for the Sun-Mars system.