this post was submitted on 26 Mar 2025
521 points (96.9% liked)
Programmer Humor
22112 readers
964 users here now
Welcome to Programmer Humor!
This is a place where you can post jokes, memes, humor, etc. related to programming!
For sharing awful code theres also Programming Horror.
Rules
- Keep content in english
- No advertisements
- Posts must be related to programming or programmer topics
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
all programs are single threaded unless otherwise specified.
It’s safe to assume that any non-trivial program written in Go is multithreaded
And yet: You’ll still be limited to two simultaneous calls to your REST API because the default HTTP client was built in the dumbest way possible.
Really? Huh, TIL. I guess I've just never run into a situation where that was the bottleneck.
But it's still not a guarantee
Definitely not a guarantee, bad devs will still write bad code (and junior devs might want to let their seniors handle concurrency).
I absolutely love how easy multi threading and communication between threads is made in Go. Easily one of the biggest selling points.
Key point: they're not threads, at least not in the traditional sense. That makes a huge difference under the hood.
Well, they're userspace threads. That's still concurrency just like kernel threads.
Also, it still uses kernel threads, just not for every single goroutine.
What I mean is, from the perspective of performance they are very different. In a language like C where (p)threads are kernel threads, creating a new thread is only marginally less expensive than creating a new process (in Linux, not sure about Windows). In comparison creating a new 'user thread' in Go is exceedingly cheap. Creating 10s of thousands of goroutines is feasible. Creating 10s of thousands of threads is a problem.
This touches on the other major difference. There is zero connection between the number of goroutines a program spawns and the number of kernel threads it spawns. A program using kernel threads is relying on the kernel's scheduler which adds a lot of complexity and non-determinism. But a Go program uses the same number of kernel threads (assuming the same hardware and you don't mess with GOMAXPROCS) regardless of the number of goroutines it uses, and the goroutines are cooperatively scheduled by the runtime instead of preemptively scheduled by the kernel.
Great details! I know the difference personally, but this is a really nice explanation for other readers.
About the last point though: I'm not sure Go always uses the maximum amount of kernel threads it is allowed to use. I read it spawns one on blocking syscalls, but I can't confirm that. I could imagine it would make sense for it to spawn them lazily and then keep around to lessen the overhead of creating it in case it's needed later again, but that is speculation.
Edit: I dove a bit deeper. It seems that nowadays it spawns as many kernel threads as CPU cores available plus additional ones for blocking syscalls. https://go.dev/doc/go1.5 https://docs.google.com/document/u/0/d/1At2Ls5_fhJQ59kDK2DFVhFu3g5mATSXqqV5QrxinasI/mobilebasic
I initially read this as “all programmers are single-threaded” and thought to myself, “yeah, that tracks”
Does Python have the ability to specify loops that should be executed in parallel, as e.g. Matlab uses
parfor
instead offor
?python has way too many ways to do that.
asyncio
,future
,thread
,multiprocessing
...Of the ways you listed the only one that will actually take advantage of a multi core CPU is
multiprocessing
yup, that's true. most meaningful tasks are io-bound so "parallel" basically qualifies as "whatever allows multiple threads of execution to keep going". if you're doing numbercrunching in pythen without a proper library like pandas, that can parallelize your calculations, you're doing it wrong.
I’ve used multiprocessing to squeeze more performance out of numpy and scipy. But yeah, resorting to multiprocessing is a sign that you should be dropping into something like Rust or a C variant.
Most numpy array functions already utilize multiple cores, because they're optimized and written in C
I've always hated object oriented multi threading. Goroutines (green threads) are just the best way 90% of the time. If I need to control where threads go I'll write it in rust.
nothing about any of those libraries dictates an OO approach.
Unless it's java.
Meh, even Java has decent FP paradigm support these days. Just because you can do everything in an OO way in Java doesn't mean you need to.
If I have to put a thread object in a variable and call a method on it to start it then it's OO multi threading. I don't want to know when the thread spawns, I don't want to know what code it's running, and I don't want to know when it's done. I just want shit to happen at the same time (90% of the time)
the thread library is aping the posix thread interface with python semantics.
Are you still using matlab? Why? Seriously
No, I'm not at university anymore.
Good for you
Poor prof
We weren't doing any ressource extensive computations with Matlab, mainly just for teaching FEM, as we've had an extensive collection of scripts for that purpose, and pre- and some post processing.
I don't like that they don't write their own algorithms in any other language. I was trying to understand low-pass filters a while back and so many web pages were like, "Call this MATLAB function" or "here's a code generator that puts out bad C for specific filter parameters" Like no, I want the algorithm explained to me...
I was telling a colleague about how my department started using Rust for some parts of our projects lately. (normally Python was good enough for almost everything but we wanted to try it out)
They asked me why we're not using MATLAB. They were not joking. So, I can at least tell you their reasoning. It was their first programming language in university, it's safer and faster than Python, and it's quite challenging to use.
"Just use MATLAB" - Someone with a kind heart who has never deployed anything to anything