this post was submitted on 24 Jul 2024
38 points (97.5% liked)
LocalLLaMA
2930 readers
38 users here now
Welcome to LocalLLaMA! Here we discuss running and developing machine learning models at home. Lets explore cutting edge open source neural network technology together.
Get support from the community! Ask questions, share prompts, discuss benchmarks, get hyped at the latest and greatest model releases! Enjoy talking about our awesome hobby.
As ambassadors of the self-hosting machine learning community, we strive to support each other and share our enthusiasm in a positive constructive way.
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
The general rule of thumb that I’ve heard is that you need 1GB of memory for ever 1B parameters. In practice however I’ve found this to not be the case. For instance on a GH200 system I’m able to run Llama3 70b in about 50GB of memory. Llama3.1 405b on the other hand uses +90GB of GPU memory and spills over to using about another 100GB of system memory… but runs like a dog at 2 tokens per second. I expect inference costs will come down over time but for now would recommend Lambda Labs if you don’t have the need for a GPU workstation.