this post was submitted on 24 Jul 2024
38 points (97.5% liked)
LocalLLaMA
2292 readers
1 users here now
Community to discuss about LLaMA, the large language model created by Meta AI.
This is intended to be a replacement for r/LocalLLaMA on Reddit.
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
What are the hardware requirements on these larger LLMs? Is it worth quantizing them for lower-end hardware for self hosting? Not sure how doing so would impact their usefulness.
The general rule of thumb that I’ve heard is that you need 1GB of memory for ever 1B parameters. In practice however I’ve found this to not be the case. For instance on a GH200 system I’m able to run Llama3 70b in about 50GB of memory. Llama3.1 405b on the other hand uses +90GB of GPU memory and spills over to using about another 100GB of system memory… but runs like a dog at 2 tokens per second. I expect inference costs will come down over time but for now would recommend Lambda Labs if you don’t have the need for a GPU workstation.
From what I've seen, it's definitely worth quantizing. I've used llama 3 8B (fp16) and llama 3 70B (q2_XS). The 70B version was way better, even with this quantization and it fits perfectly in 24 GB of VRAM. There's also this comparison showing the quantization option and their benchmark scores:
Source
To run this particular model though, you would need about 45GB of RAM just for the q2_K quant according to Ollama. I think I could run this with my GPU and offload the rest of the layers to the CPU, but the performance wouldn't be that great(e.g. less than 1 t/s).