SkySyrup

joined 1 year ago
MODERATOR OF
[–] SkySyrup 21 points 10 months ago (2 children)

Young something has been in my eye for the past twelve hours and I want to scream

[–] SkySyrup 1 points 10 months ago* (last edited 10 months ago) (1 children)

but it yummy

also expensive as fuck wtf the last time I had it it was like 12 bucks never again

[–] SkySyrup 4 points 10 months ago

greedy music labels strike again!

[–] SkySyrup 5 points 10 months ago

I choose to press. What did she do wrong?

[–] SkySyrup 1 points 10 months ago
[–] SkySyrup 2 points 11 months ago (2 children)

exactly. The people who say this clearly have literally no idea how it actually works (I’ve seen people unironically saying it compresses all the images and stores them) and just jump off the next twitter post as reference

62
REFERENCE rule (sh.itjust.works)
submitted 11 months ago by SkySyrup to c/[email protected]
 

let’s see how low effort posts can be rule

CAPTION: A comment count totalling 196 circled in red

[–] SkySyrup 7 points 11 months ago

my dumbass read

Cook yourself

[–] SkySyrup 4 points 11 months ago
[–] SkySyrup 4 points 11 months ago (2 children)
[–] SkySyrup 10 points 11 months ago (1 children)

I presume you have experience with these traps?

[–] SkySyrup 9 points 11 months ago (4 children)

UwU

I neeeeeeed it

[–] SkySyrup 5 points 11 months ago
155
uncomfortable (sh.itjust.works)
submitted 11 months ago by SkySyrup to c/[email protected]
 

lol

196
ornament (sh.itjust.works)
submitted 11 months ago by SkySyrup to c/[email protected]
 

I hope this isn’t a repost

981
usb formatting (sh.itjust.works)
submitted 11 months ago by SkySyrup to c/[email protected]
 

shamelessly stolen from nixCraft on mastodon

227
fixed the dress rule (sh.itjust.works)
 

I (was :( ) wearing a cute dress

276
take this rule (sh.itjust.works)
 

a person holding a cat with the caption: It’s dangerous to go alone, take this

170
phone unlock rule (sh.itjust.works)
 

Content: creepy mark zuckerberg staring at camera with caption: This person tried to unlock your phone

 
 

The models after pruning can be used as is. Other methods require computationally expensive retraining or a weight update process.

Paper: https://arxiv.org/abs/2306.11695

Code: https://github.com/locuslab/wanda

Excerpts: The argument concerning the need for retraining and weight update does not fully capture the challenges of pruning LLMs. In this work, we address this challenge by introducing a straightforward and effective approach, termed Wanda (Pruning by Weights and activations). This technique successfully prunes LLMs to high degrees of sparsity without any need for modifying the remaining weights. Given a pretrained LLM, we compute our pruning metric from the initial to the final layers of the network. After pruning a preceding layer, the subsequent layer receives updated input activations, based on which its pruning metric will be computed. The sparse LLM after pruning is ready to use without further training or weight adjustment. We evaluate Wanda on the LLaMA model family, a series of Transformer language models at various parameter levels, often referred to as LLaMA-7B/13B/30B/65B. Without any weight update, Wanda outperforms the established pruning approach of magnitude pruning by a large margin. Our method also performs on par with or in most cases better than the prior reconstruction-based method SparseGPT. Note that as the model gets larger in size, the accuracy drop compared to the original dense model keeps getting smaller. For task-wise performance, we observe that there are certain tasks where our approach Wanda gives consistently better results across all LLaMA models, i.e. HellaSwag, ARC-c and OpenbookQA. We explore using parameter efficient fine-tuning (PEFT) techniques to recover performance of pruned LLM models. We use a popular PEFT method LoRA, which has been widely adopted for task specific fine-tuning of LLMs. However, here we are interested in recovering the performance loss of LLMs during pruning, thus we perform a more general “fine-tuning” where the pruned networks are trained with an autoregressive objective on C4 dataset. We enforce a limited computational budget (1 GPU and 5 hours). We find that we are able to restore performance of pruned LLaMA-7B (unstructured 50% sparsity) with a non-trivial amount, reducing zero-shot WikiText perplexity from 7.26 to 6.87. The additional parameters introduced by LoRA is only 0.06%, leaving the total sparsity level still at around 50% level. ​

NOTE: This text was largely copied from u/llamaShill

26
submitted 1 year ago* (last edited 1 year ago) by SkySyrup to c/cats
 

He's 15 years old now, and his ears really bother him, but he still brutally murders birds in our garden.

the fur on the sofa is from the other cats lol

 

This Community is new, but I plan to expand it and partially mirror posts from r/LocalLLaMA on Reddit.

25
Hello World (self.localllama)
submitted 1 year ago by SkySyrup to c/localllama
 

Hi, you've found this ~~subreddit~~ Community, welcome!

This Community is intended to be a replacement for r/LocalLLaMA, because I think that we need to move beyond centralized Reddit in general (although obviously also the API thing).

I will moderate this Community for now, but if you want to help, you are very welcome, just contact me!

I will mirror or rewrite posts from r/LocalLLama for this Community for now, but maybe we could eventually all move to this Community (or any Community on Lemmy, seriously, I don't care about being mod or "owning" it).

view more: next ›