this post was submitted on 06 Jan 2024
289 points (86.2% liked)

memes

10398 readers
1891 users here now

Community rules

1. Be civilNo trolling, bigotry or other insulting / annoying behaviour

2. No politicsThis is non-politics community. For political memes please go to [email protected]

3. No recent repostsCheck for reposts when posting a meme, you can only repost after 1 month

4. No botsNo bots without the express approval of the mods or the admins

5. No Spam/AdsNo advertisements or spam. This is an instance rule and the only way to live.

Sister communities

founded 1 year ago
MODERATORS
 

I considered deleting the post, but this seems more cowardly than just admitting I was wrong. But TIL something!

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 26 points 10 months ago (5 children)

Neither is bigger. Even "∞ x ∞" is not bigger than "∞". Classical mathematics sort of break down in the realm of infinity.

[–] [email protected] 12 points 10 months ago (2 children)

It was probably mentioned in other comments, but some infinities are "larger" than others. But yes, the product of the two with the same cardinal number will have the same

[–] [email protected] 11 points 10 months ago

Yes, uncountably infinite sets are larger than countably infinite sets.

But these are both a countably infinite number of bills. They're the same infinity.

[–] [email protected] 7 points 10 months ago (1 children)

I think quite some people heard of the concept of different kinds of infinity, but don't know much about how these are defined. That's why this meme should be inverted, as thinking the infinities described here are the same size is the intuitive answer when you either know nothing or quite something about the definition whereas knowing just a little bit can easily lead you to the wrong answer.

As the described in the wikipedia article in the top level comment, the thing that matters is whether you can construct a mapping (or more precisely, a bijection) from one set to the other. If so, the sets/infinities are of the same "size".

[–] [email protected] 2 points 10 months ago

Yeah, inverting it is a good idea, truly

[–] [email protected] 8 points 10 months ago (1 children)

Yeah, we can still however analyze the statement f(x)=100x$/1x$ lim(x->inf) and clearly come to the conclusion that as the number of bills x approaches infinity will be equal to 100.

However, limes exists as a tool to avoid infinities and this exact problem when using calculus for practical applications - and as such it doesn't apply here.

[–] [email protected] 10 points 10 months ago (2 children)
[–] [email protected] 8 points 10 months ago (1 children)

Mathematically speaking, they should be converted to lemonade.

[–] [email protected] 3 points 10 months ago

Screw that! I'm the man who's gonna burn your house down! With the lemons! I'm gonna get my engineers to invent a combustible lemon that burns your house down!

[–] [email protected] 3 points 10 months ago

Depends on if there's any lemon stealing whores around.

[–] [email protected] 2 points 10 months ago

You're the guy in the middle by the way.

[–] [email protected] 1 points 10 months ago

This problem doesn't involve cardinal numbers.

[–] [email protected] 1 points 10 months ago (1 children)

So it’s basically just a form of NaN?

[–] [email protected] 2 points 10 months ago* (last edited 10 months ago) (1 children)
[–] [email protected] 1 points 10 months ago

I didn’t know there was a special case for that. Neat.