this post was submitted on 22 Sep 2023
15 points (89.5% liked)
LocalLLaMA
2867 readers
76 users here now
Welcome to LocalLLaMA! Here we discuss running and developing machine learning models at home. Lets explore cutting edge open source neural network technology together.
Get support from the community! Ask questions, share prompts, discuss benchmarks, get hyped at the latest and greatest model releases! Enjoy talking about our awesome hobby.
As ambassadors of the self-hosting machine learning community, we strive to support each other and share our enthusiasm in a positive constructive way.
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I'm not really sure I follow, it's just a simplification, the most appropriate phrasing I guess would be "given A belongs to B, does it know B 'owns' A" like the examples given with "A is the son of B, is B the parent of A"
Looks like the findings are specifically about out-of-context learning, i.e. fine-tuning on facts like "Tom Cruise's mother was Mary Lee Pfeiffer" is not enough to be able to answer a questions like "Who are the children of Mary Lee Pfeiffer?", without any prompt engineering/tuning.
However, if you have in the context something like "Who was Tom Cruise's mother?", then the LLM has no problem answering correctly "Who are the children of Mary Lee Pfeiffer?", listing all the children, including Tom Cruise.
Note that it would be confusing even to a human to ask "Who is the son of Mary Lee Pfeiffer?", which is what they test on, since the lady had more than one son. That was the point of my comment, it's just a misleading question.
But that's not the issue in general that the researchers have unearthed, as I assumed based on the "A is B" summary, so yeah, it's just a poor choice of wording.