LocalLLaMA
Welcome to LocalLLaMA! Here we discuss running and developing machine learning models at home. Lets explore cutting edge open source neural network technology together.
Get support from the community! Ask questions, share prompts, discuss benchmarks, get hyped at the latest and greatest model releases! Enjoy talking about our awesome hobby.
As ambassadors of the self-hosting machine learning community, we strive to support each other and share our enthusiasm in a positive constructive way.
Rules:
Rule 1 - No harassment or personal character attacks of community members. I.E no namecalling, no generalizing entire groups of people that make up our community, no baseless personal insults.
Rule 2 - No comparing artificial intelligence/machine learning models to cryptocurrency. I.E no comparing the usefulness of models to that of NFTs, no comparing the resource usage required to train a model is anything close to maintaining a blockchain/ mining for crypto, no implying its just a fad/bubble that will leave people with nothing of value when it burst.
Rule 3 - No comparing artificial intelligence/machine learning to simple text prediction algorithms. I.E statements such as "llms are basically just simple text predictions like what your phone keyboard autocorrect uses, and they're still using the same algorithms since <over 10 years ago>.
Rule 4 - No implying that models are devoid of purpose or potential for enriching peoples lives.
view the rest of the comments
I suppose that line means llama.cpp tried to allocate another chunk of memory, roughly 2GB and that failed because there wasn't any memory left. I'm not sure about the details, maybe it's the KV cache and additional stuff that is required for the computation aside from the model itself? Have you tried lowering the number of layers to offload to the iGPU and see if that works? Like lowering the value to
-ngl 20
might leave additional space for other important things.Yeah I tested with lower numbers and it works, I just wanted to offload the whole model thinking it will work, 2GB it's a lot. With other models it prints about 250MB when fails and if you sum up the model size it's still well below the iGPU free memory so I dont get it... anyway, I was thinking about upgrading the memory to 32GB or may be 64GB but I hesitate because with models around 7GB and CPU only I get around 5 t/s and with 14GB 2-3 t/s, so I run one of around 30GB I guess it will get around 1 t/s? My supposition is that increasing RAM doesn't increase performance per se, just let's you upload bigger models to memory, so performance is approximately linear on model size... what do you think?
From what I know, I assume yes, the relation between model size and speed/performance should be linear. Maybe there is some additional small overhead making it a bit faster or slower than expected. But I'm really not an expert on the maths, so don't trust me.
And maybe have a look at this bugreport: https://github.com/ggml-org/llama.cpp/issues/11332
I think it matches your situation. They resolve this by messing with the batch size and someone recommends not to use Vulkan on an iGPU.
Oh great, thanks