this post was submitted on 08 Feb 2025
25 points (96.3% liked)
Asklemmy
44911 readers
1135 users here now
A loosely moderated place to ask open-ended questions
Search asklemmy ๐
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- [email protected]: a community for finding communities
~Icon~ ~by~ ~@Double_[email protected]~
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
At this point, retail devices capable of 96 GB memory aren't too difficult to find, if pocket allows, but how can one enter TB zone?
96 GB+ of RAM is relatively easy, but for LLM inference you want VRAM. You can achieve that on a consumer PC by using multiple GPUs, although performance will not be as good as having a single GPU with 96GB of VRAM. Swapping out to RAM during inference slows it down a lot.
On archs with unified memory (like Apple's latest machines), the CPU and GPU share memory, so you could actually find a system with very high memory directly accessible to the GPU. Mac Pros can be configured with up to 192GB of memory, although I doubt it'd be worth it as the GPU probably isn't powerful enough.
Also, the 83GB number I gave was with a hypothetical 1 bit quantization of Deepseek R1, which (if it's even possible) would probably be really shitty, maybe even shittier than Llama 7B.
Data centers use NVLink to connect multiple Nvidia GPUs. Idk what the limits are, but you use it to combine multiple GPUs to pool resources much more efficiently and at a much larger scale than would be possible on consumer hardware. A single Nvidia H200 GPU has 141 GB of VRAM, so you could link them up to build some monster data centers.
Nivida also sells prebuilt machines like the HGX B200 which can have 1.4TB of memory in a single system. That's less than the 2.6TB for unquantized deepseek, but for inference only applications, you could definitely quantize it enough to fit within that limit with little to no quality loss... so if you're really interested and really rich, you could probably buy one of those for your home lab.