this post was submitted on 11 Aug 2024
854 points (99.1% liked)
Mildly Interesting
17668 readers
387 users here now
This is for strictly mildly interesting material. If it's too interesting, it doesn't belong. If it's not interesting, it doesn't belong.
This is obviously an objective criteria, so the mods are always right. Or maybe mildly right? Ahh.. what do we know?
Just post some stuff and don't spam.
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Why would you even say something so stupid? I highly doubt that you are interested in a discussion.
But just in case, it is called "Dunkelflaute". And no, we do not constantly produce so much more energy that losing a lot of capacity makes us "dip below demand". We constantly only produce as much as we need. But why even discuss this here? People spend their whole career figuring this out, it is obviously not as simple as you make it out to be. Here a report from the EU. Just to show the scale of the project:
Please keep it civil. You provided very little context in your original argument, which made it very hard to give you a meaningful response.
Your link regarding Dunkelflaute helps to provide context, thanks for that. I had not heard of this phenomenon before. The research paper in the citations does mention that while it occurs somewhat regularly for an area e.g. the size of a country, it rarely happens simultaneously for say the EU-11 mentioned (most of northern Europe). The page also mentions importing power during these periods from other regions would mostly resolve this problem. Seems important to take into account, but not an impossible problem to deal with, especially given that it already happens and we already use inter-grid connections to handle it? What's your perspective on this?
I certainly don't mean to pretend this is a simple problem by any means. Conceptually, sure, it's "simple", but bringing it to practice is much harder. It's also why I'm perhaps more pessimistic about the timeframe in which we can execute these plans, particularly also because we need to scale up battery production by a factor of at least 10. It's why I think we also need to invest in research regarding higher-capacity batteries made from easier to procure materials. Certainly a difficult endeavor by the way, but absolutely necessary. We've made promising progress on that front at least, but we've got a long way to go still.
In my opinion, focusing on renewables + storage has the highest long-term chance of success combined with manageable costs. If you're willing to up the chance of success offset by incurring higher costs, adding nuclear to the mix is perfectly acceptable to me. But even longer-term (especially post net-zero) I think it's almost inevitable that fission reactors will end up not economically competing with alternatives.
Thank you for proving me wrong regarding the discussion. It just felt insulting to read, as if the sun only stops shining when the earth doesn't spin. The tiny fraction of output on overcast days is negligible.
Yes, Dunkelflaute is not impossible to deal with. But we can not bridge these gaps with batteries, as you already pointed out. I doubt that we can bridge it with power from intercontinental transmission lines, given how the politics look like today and how much they need to change first + then actually starting to plan and build it... In 50 year perhaps. But we need a CO2 reducing solution now. Right now. Not in 30 years. Batteries are not relevant now and won't be in the foreseeable future due to monetary, resource and manufacturing bottlenecks. Storage of electricity to later use it as electricity is simply not feasible right now, apart from the minutes you get from existing hydro storage.
Right "now", so in the next decade, if we push modern nuclear instead of fossiles (which we need to keep building due to said fluctuations) we will get far less CO2 quickly. At the same time, we can burn the old nuclear "waste".
Well, on overcast days most solar panels these days still produce up to 25% of their normal output. Nothing to sniff at I'd think. Perhaps not enough, but certainly not nothing.
I think you may be a tad pessimistic here. Consider Europe, even during a Dunkelflaute not the entire continent is without renewables, only a region of it. If northern Europe has one, southern Europe is very, very unlikely to have one as well for example. And inter-continental power lines aren't as rare as you might think! I believe the UK is currently building one to Morocco, and there's plans to build one via Greece and Cyprus to the Middle-East.
I don't fully agree here. Certainly on a more household level battery storage is already perfectly feasible and being installed a lot these days. The growth of this sector is also staggeringly high. Year-on-year the sector nearly doubles, as costs are coming down quite quickly and the economic picture starts to maie more and more sense. We don't produce enough now, but in 10 years that picture might be radically different.
Experience learns that new nuclear reactors take 15 to 20 years to build, from planning to end of construction. If the focus is on nuclear, any CO2 savings will likely come too late. And then there's still the economic problem of nuclear being far too expensive compared to solar/wind. Barely any investor is willing to touch it unless the government super-heavily subsidises it, resulting in expensive power and higher taxes (e.g. what happened in France). And then there's the issue that we don't have enough expertise and rare materials to build enough reactors to cover enough of the world's production. We have a hard enough time building just a couple reactors, let alone thousands. And having poorer 3rd world countries finance their own reactors also seems unlikely.
I believe I saw research that suggested the fastest route to net zero, whilst still being affordable and feasible without emitting too much CO2 in the meantime was a very heavy push for renewables, investments into energy infrastructure (which are mostly required regardless of the route taken) and research into battery tech so that in 25-30 years we may have enough storage to ditch the last fossil fuel plants. In the meantime keeping gas power plants open seemed the least polluting backup method in case of power generation dips, plus potentially shutting off heavy industry during those periods to save power (fairly cheap, requires little investment to do). Nuclear doesn't have to disappear, but the cost-benefit analysis just didn't tilt in its favour. But it might make sense on a more local level perhaps, that's always an issue with those super macro-economic studies.
I was hoping to find it but I'm having a hard time doing so. If I find it I'll link it to you, it was an interesting read.
Sounds like a reasonable approach, at least if batteries keep improving and getting more cheaper as they did in the past. Working on things that work right now, like modern nuclear, seems like a reasonable addition.
When comparing cost of nuclear vs. wind or solar, it is very easy to get to smaller numbers. But then you have no storage and no massive infrastructure, which means solar and wind can not work. Omitting these costs is a nice way to make it more palatable, but not an honest approach when comparing different technologies.