Read it as germans who are 1.5 meter tall, wondered why them being short is relevant.
Technology
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
Home solar indicates a massive management failure of public utilities. If it is more cost effective and more pleasant to generate your own electricity without any economies of scale, something is very wrong.
Source: I live in California where the “public” utility is an absolute disaster that charges $.60-$.70/kW/hr so anybody who can afford the upfront cost of solar has done so.
God, I love living in a nuclear plant evacuation zone
Microgeneration makes way more sense to me. If you generate the power where it is used without pollution, we should. The unfortunate piece is we have to many landlords who's interest are too divorced from their tenets to put up more microgeneration
These microinverters aren’t made of fairy dust. Doing this stuff at utility scale uses a lot less nasty minerals and chemicals.
Makes sense mathematically or you think makes sense?
Shoot, my electric is like $.0625/KWH
But there is also another 75-100 bucks tacked on as fees. Tempting to go solar and disconnect from the grid. Even without selling energy back to the grid, I would break even. (Savings over 20 years ~200 bucks)
The rent seekers making everything worse again
I live in an area where there is a monopoly of power supply by one of the worse polluters in American history, in a small area within a county there's an existing co-op power company that was basically grandfathered in because it's been in existence for so long while no other competitors are allowed in the area.
That co-op when I lived in the area was about half the cost of the monopoly company, a relative gets actually paid to be a member because they received their fathers account when he passed away and extra funds are distributed among all the members based on how long they've been with them (a little weird, but at least better than shareholders getting the profit).
You are absolutely right that the electric companies as a whole have failed, they've been allowed to amass too much influence and coverage while squashing any kind of competition. Why electrical needs aren't considered a national resource is mind baffling to me. Our country and citizens way of life would literally grind to a halt without it.
Infrastructure should be public, with regulated access for wholesale and retail. It works. The grid operator needs to make money for large scale projects like interconnectors, modernising, maintenance and build.
My dumb ass: “Is it just 1.5m Germans, or other heights too?”
1.5m Germans are 150cm people !
M in million should always be capitalised for this reason.
1.5M Germans vs 1.5m Germans
1.5 10^6 Germans vs 1.5 10^-3 Germans
Megagermans vs milligermans
Until I read this comment I was 100% certain the post was about short Germans somehow preferring having their balconies occluded by taller-than-them solar panels.
The relentless march of sustainable cosplay continues. A million Germans clinging to plasticky solar trinkets like rosary beads against energy insecurity—how very on-brand for a nation that dismantled nuclear plants to cozy up with Putin’s pipelines. Nothing screams “green revolution” like propping up coal while bureaucrats hyperventilate over balcony wattage permits.
But sure, let’s pretend these glorified battery chargers absolve collective guilt. Social media’s latest performative ritual—slap a panel on your railing, flood Instagram with hashtags, ignore the 14-month waiting list for certified installers. Peak late-stage decarbonization theater: all aesthetics, no grid.
At least it’s honest. We’ve stopped pretending policy can fix anything. Why demand competent governance when you can DIY your dystopia?
This is really nice! This is the future!
I'd love to know how much they produce, especially during the winter/monthly.
That kind of depends on what you're building. Standard is currently 800W (2 standard solar panels). Older models use 600W, other models are using 2000W and limit it to 800W. That doesn't make much sense, but skirts our local regulations that limits them to 800W, but of course generates more energy.
It then also depends on where you live. Can you point it to the sun? Do you live in sunny Spain or in northern Norway? In Germany a 800W system can produce 800-1200kWh per year. Our average electricity price is at 0.35€, so you'll save 280€-420€ a year. And those systems are dirt cheap, there are deals out there where you can get one for 200€. That is quite a good ROI for something that you can install in an hour.
If you want to know more, here is a calculator https://priwatt.de/service/ertragsrechner/
Yeah I get all that, but what if I need heating in the winter and have very low consumption in the summer? That is why I'm searching for real world numbers. If you give me some for a specific place then I can at least have a ballpark number if what I might get where I live.
OTOH as you say, they start to be so cheap it's almost impossible to go wrong...
That won't really work as that is the worst scenario for solar. I can give you real world data from southern germany. I don't have balcony solar, but a 13,4kWp solar system on my roof. Here is the data from this year:
As you can see, days are getting longer in Feb, generation is going up. To get a rough estimate, take my data and divide it by 16,75. That won't give you a lot of heating, esp. with a normal space heater. Even if you had a scenario, where your 800W solar system would produce 800W in the winter, your space heater will suck 2000W. Take a look at its power cord, you'll see how much it uses.
So yeah, 800W is not much, but will cover your running appliances like your fridge, freezer, router or computer on sunny days.
Hey thank you! I'm definitely saving this off for my future calculations!
You're totally correct about the rest, and I'm now able to roughly see if I should buy a 800 system or two, or theee... Electric hookups included in the calculation of course.
In the Northern hemisphere, in Winter the Sun is at a low angle, so vertically oriented panels might produce more. As an example, I have a sunroom and at Winter's Solstice the sunlight reaches about 3-4 meters into the room. At Summer's Solstice there is no direct sunlight in the room, as the Sun is overhead.
couple of things to note:
- Not every balcony is southern facing
- Most older European homes don't have A/C yet, so electrical costs are more during the winter months (that trend will change though I imagine)
- I think the numbers @[email protected] was asking about involved power output, that of course depends on the size of your array, daily/monthly/yearly differences in weather, and all sorts of little nuances that's hard to say without averaging out years worth of data.
Do you have any numbers :-) ?
I have a sunroom, what sort of numbers are you asking for? It's a partly cloudy day, about 22C in the room, without heat. And about 7C outside.
Nice numbers <3
"100 million smokers can't be wrong!"
For first few seconds, I deadass though they are talking about Germans with a height of 1,5 meters.
That was me.
So why won't taller Germans get solar? I don't even see the connection to height... Oh, maybe they hit their heads on the panels? No, that doesn't seem likely... I don't get it.
“Plug-in solar is part of the whole array of options,”
I don't understand how this works? For our system we need an inverter that cost about $3000.- (half if it doesn't have to handle a battery), and it needs to be installed by an authorized electrician.
For a small system as the one shown, the price of panels are peanuts, the 2 panels shown should cost less than $150 combined. While the cost of inverter and getting it connected is way way higher. There's a lot more to this than not being on the roof!?! But which isn't disclosed.
The article says nothing about how the power from those panels is made usable.
Balcony solar is a set of diy technologies that require no utility permissions.
In Germany, NL, you can just plug it into socket and it works somehow.
In us you can use powerstations and also adapters that sync draw from battery as it charges from ac in house.
It pays for itself even with more expensive equipment, by not needed license, permission, that can lead to cheap efficient panels costing over 3$ per watt. Small systems that just offset use instead of selling back, have higher revenue offsets in high per kwh priced markets.
In Germany, NL, you can just plug it into socket and it works somehow.
This is incredibly dangerous as it will feed power into the grid even when the grid is down. You might say 'that is great!', yeah, well, the line technicians who cannot work on damaged cables because you are energizing them think otherwise.
One of the reasons home solar grid-feeding systems are expensive in the US is they have extra equipment to disconnect the system from the grid if the grid goes down. Your house can still have local power, but you won't be energizing powerlines technicians are trying to fix.
These plugin systems shut down automatically when there's a power outage. To make sure that they really do shut down when needed, in Belgium only plugin systems that have been approved by the network management organisation may be used. The other countries that allow these probably have similar precautions.
There are two main inverter approaches. One big inverter that takes the DC from a bunch of panels and converts it into AC and micro inverters where each panel gets it's own small one placed directly under the panel.
The micro inverters cost around $150 each. So you need around 10 panels before the single inverter becomes a good choice.
Installers love the micro because the install is easier. However as a owner with say 30 panels you now have 30 points of possible failure instead of the 1.
Oh boy, apparently there's a lot I don't know. It's really cool there are those cheaper options now.
The "balcony" bit isn't the defining characteristic, it shouldn't be taken literally. Some people do have their "balcony solar power" on their roofs.
What defines it is limitation to 800 W and inverters that come with a normal Euro Type F ("Schuko") plug and no legal requirement for professional installation. A layman can literally plug it in to an existing wall socket. Given that they are capped at 800 Watts, the inverters are also the simplest type and dirt cheap (although often they are literally just software-capped and identical to higher power ones, make of that what you will). Complete systems (2 panels, cabling, inverter) cost between 299€ and 800€ depending on quality. You genuinely only have to buy a fixture that suits your needs and a mate to help you install it.
Proper several-Kilowatt-systems are very expensive in Germany too.
Thanks really good info. 👍😀
A layman can literally plug it in to an existing wall socket
That's amazing, I had no idea that is possible??? Is that special for Germany? (sorry for keeping on with new questions). 😋 I've never heard of that option here in Denmark.
cost between 299€ and 800€
No wonder it's a popular option, our system is of course bigger with 11.2 kWh and 7.5 kWh battery. but it was $17000 1½ year ago. Prices have dropped to $12500 for a similar system, but still such an 800W system is dirt cheap by comparison.
I had no idea that is possible??? Is that special for Germany?
I mean, the regulation seems to be, but there's no fancy tech going on. I'm not an electrician but I think I can explain, as I have recently tried to understand myself. To understand why it's possible it's best to understand why the limit is at 800 W precisely.
So German wall outlets usually have a 16 A fuse and the wiring in the walls is dimensioned to accommodate slightly higher current (I think they are 2.5mm² gauge allowing up to 20 A but don't quote me on that particular part) for safety reasons. I suppose it would be the same or very similar in Denmark, or maybe most of Europe that uses 230V/50Hz AC.
Now, normally, if you have dangerously powerful load that would melt your wires, let's say 5 kW, and you plug it in to an outlet the fuse will just pop and you're safe. If however you have a 2 kW PV system connected to a wall outlet nearby, it would theoretically be possible that your 5 kW load draws 13 A (3 kW) from the mains through the fuse and another 8.7 A (2 kW) from the PV system over the same wire in the wall that is only rated at 20 A but now carries 21.7 A. And the fuse would never pop at 13 A, making it a huge fire hazard. 800 W is basically just what will always comfortably fit into the safety margin of the wiring in German houses. All systems above 800 W need to be hardwired by professionals "behind" the fuse box so that every Amp from your PV goes through a typical 16 A fuse.
still such an 800W system is dirt cheap by comparison
Absolutely. I guess the low threshold for installation allows some kind of mass market economy of scale whereas systems like yours are homeowners' luxury goods.