What about the mass of that stick? Inertial doesn't care for your little silly games.
Asklemmy
A loosely moderated place to ask open-ended questions
Search asklemmy ๐
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- [email protected]: a community for finding communities
~Icon~ ~by~ ~@Double_[email protected]~
Short version: forces applied to solid objects move at the speed of sound in that object.
Lets say your stick is made of steel. The speed of sound in steel is about 19,000 feet/second. Assuming you could push hard enough for the force to be felt on the other end, it'd take over 18 hours for your partner on Earth to feel your push from the moon.
The speed of 'push' is effectivly the speed of sound in a medium. So your shove would be the same as propagating a soundwave through whatever that rod is made of.
Veritassium covers this https://www.youtube.com/watch?v=EPsG8td7C5k&t=61s
There's a bunch of these thought experiments that try to posit scenarios where C is violated.
Here's one I remember from uni involving scissors. Similar to what OP was thinking, but really really big scissors.
At this scale, the stick isn't as solid as your intuition would lead you to believe. Instead, you have to start thinking about the force at the atomic scale. The atoms in your hand have an outer shell of electrons which you use to impart a force to the electrons in the outer atoms of the stick on your end. That force needs to be transferred atom to atom inside the stick, much like a Newton's Cradle. Importantly, this transfer is not instantaneous, each "bump" takes time to propagate down the stick and will do so slower than the speed of light in a vacuum. It's basically a shockwave traveling down the length of the stick. The end result is that the light will get to the person on the other end before the sequence of sub-atomic bumps has the chance to get there.
How heavy would a stick of this size weigh?
We're supposing that you have an herculean strengh and that weight is not a problem
Weigh on Earth or on Moon?
This doesn't account for blinking.
If your friend blinks, they won't see the light, and thus would be unable to verify whether the method works or not.
But how does he know when to open his eyes? He can't keep them open forever. Say you flash the light once, and that's his signal to keep his eyes open. Okay, but how long do you wait before starting the experiment? If you do it immediately, he may not have enough time to react. If you wait too long, his eyes will dry out and he'll blink.
This is just not going to work. There are too many dependent variables.
Do you think it would be possible if you remove the astronauts eyelids? Would that enable faster than light communication?
The only way to know for sure is by trying
Okay done i got his lids whos got the space gear and the impossible stick