AGI (artificial general intelligence) will be achieved once OpenAI has developed an AI system that can generate at least $100 billion in profits
nothing to do with actual capabilities.. just the ability to make piles and piles of money.
This is a most excellent place for technology news and articles.
AGI (artificial general intelligence) will be achieved once OpenAI has developed an AI system that can generate at least $100 billion in profits
nothing to do with actual capabilities.. just the ability to make piles and piles of money.
The same way these capitalists evaluate human beings.
Guess we're never getting AGI then, there's no way they end up with that much profit before this whole AI bubble collapses and their value plummets.
That's an Onion level of capitalism
The context here is that OpenAI has a contract with Microsoft until they reach AGI. So it's not a philosophical term but a business one.
Right but that's not interesting to anyone but themselves. So why call it AGI then? Why not just say once the company has made over x amount of money they are split off to a separate company. Why lie and say you've developed something that you might not have developed.
honestly I agree. 100 Billion profit is incredibly impressive and would overtake basically any other software industry in the world but alas it doesn't have anything to do with "AGI". For context, Apple's net income is 90 Billion this year.
I've listened to enough interviews to know that all of AI leaders want this holy grail title of "inventor of AGI" more than anything else so I don't think the definitely will ever be settled collectively until something so mind blowing exists that would really render the definition moot either way.
Lol. We're as far away from getting to AGI as we were before the whole LLM craze. It's just glorified statistical text prediction, no matter how much data you throw at it, it will still just guess what's the next most likely letter/token based on what's before it, that can't even get it's facts straith without bullshitting.
If we ever get it, it won't be through LLMs.
I hope someone will finally mathematically prove that it's impossible with current algorithms, so we can finally be done with this bullshiting.
There are already a few papers about diminishing returns in LLM.
I hope someone will finally mathematically prove that it's impossible with current algorithms, so we can finally be done with this bullshiting.
They did! Here's a paper that proves basically that:
van Rooij, I., Guest, O., Adolfi, F. et al. Reclaiming AI as a Theoretical Tool for Cognitive Science. Comput Brain Behav 7, 616–636 (2024). https://doi.org/10.1007/s42113-024-00217-5
Basically it formalizes the proof that any black box algorithm that is trained on a finite universe of human outputs to prompts, and capable of taking in any finite input and puts out an output that seems plausibly human-like, is an NP-hard problem. And NP-hard problems of that scale are intractable, and can't be solved using the resources available in the universe, even with perfect/idealized algorithms that haven't yet been invented.
This isn't a proof that AI is impossible, just that the method to develop an AI will need more than just inferential learning from training data.
I just tried Google Gemini and it would not stop making shit up, it was really disappointing.
Roger Penrose wrote a whole book on the topic in 1989. https://www.goodreads.com/book/show/179744.The_Emperor_s_New_Mind
His points are well thought out and argued, but my essential takeaway is that a series of switches is not ever going to create a sentient being. The idea is absurd to me, but for the people that disagree? They have no proof, just a religious furver, a fanaticism. Simply stated, they want to believe.
All this AI of today is the AI of the 1980s, just with more transistors than we could fathom back then, but the ideas are the same. After the massive surge from our technology finally catching up with 40-60 year old concepts and algorithms, most everything has been just adding much more data, generalizing models, and other tweaks.
What is a problem is the complete lack of scalability and massive energy consumption. Are we supposed to be drying our clothes at a specific our of the night, and join smart grids to reduce peak air conditioning, to scorn bitcoin because it uses too much electricity, but for an AI that generates images of people with 6 fingers and other mangled appendages, that bullshit anything it doesn't know, for that we need to build nuclear power plants everywhere. It's sickening really.
So no AGI anytime soon, but I am sure Altman has defined it as anything that can make his net worth 1 billion or more, no matter what he has to say or do.
Lol. We’re as far away from getting to AGI as we were before the whole LLM craze. It’s just glorified statistical text prediction, no matter how much data you throw at it, it will still just guess what’s the next most likely letter/token based on what’s before it, that can’t even get it’s facts straith without bullshitting.
This is correct, and I don't think many serious people disagree with it.
If we ever get it, it won’t be through LLMs.
Well... depends. LLMs alone, no, but the researchers who are working on solving the ARC AGI challenge, are using LLMs as a basis. The one which won this year is open source (all are if are eligible for winning the prize, and they need to run on the private data set), and was based on Mixtral. The "trick" is that they do more than that. All the attempts do extra compute at test time, so they can try to go beyond what their training data allows them to do "fine". The key for generality is trying to learn after you've been trained, to try to solve something that you've not been prepared for.
Even OpenAI's O1 and O3 do that, and so does the one that Google has released recently. They are still using heavily an LLM, but they do more.
I hope someone will finally mathematically prove that it’s impossible with current algorithms, so we can finally be done with this bullshiting.
I'm not sure if it's already proven or provable, but I think this is generally agreed. just deep learning will be able to fit a very complex curve/manifold/etc, but nothing more. It can't go beyond what was trained on. But the approaches for generalizing all seem to do more than that, doing search, or program synthesis, or whatever.
I mean, human intelligence is ultimately too "just" something.
And 10 years ago people would often refer to "Turing test" and imitation games in the sense of what is artificial intelligence and what is not.
My complaint to what's now called AI is that it's as similar to intelligence as skin cells grown in the form of a d*ck are similar to a real d*ck with its complexity. Or as a real-size toy building is similar to a real building.
But I disagree that this technology will not be present in a real AGI if it's achieved. I think that it will be.
We know a lot more about recurrent neural networks, and how to train them. This all took off thanks to consumer hardware.
The bubble's gonna burst - because the bubble is morons teaching a helicopter to mow grass. But if you missed it, we now have a machine that can describe a scene in a video, and build a 3D model of it, including guesses about the backsides of objects. It's pretty gloopy, but so were still images, all of two years ago.
This latest push for "AI" either shatters a bunch of things we insisted would require a true intelligence - or else it's a near miss for building a true intelligence. LLMs aren't the right kind of deep neural network for AGI. But we've proved you can build any shape of network just by pouring data through it. The trick now is finding the right shape.
We taught sand to do math
And now we're teaching it to dream
All the stupid fucks can think to do with it
Is sell more cars
Cars, and snake oil, and propaganda
We've had definition for AGI for decades. It's a system that can do any cognitive task as well as a human can or better. Humans are "Generally Intelligent" replicate the same thing artificially and you've got AGI.
So if you give a human and a system 10 tasks and the human completes 3 correctly, 5 incorrectly and 3 it failed to complete altogether... And then you give those 10 tasks to the software and it does 9 correctly and 1 it fails to complete, what does that mean. In general I'd say the tasks need to be defined, as I can give very many tasks to people right now that language models can solve that they can't, but language models to me aren't "AGI" in my opinion.
Agree. And these tasks can't be tailored to the AI in order for it to have a chance. It needs to drive to work, fix the computers/plumbing/whatever there, earn a decent salary and return with some groceries and cook dinner. Or at least do something comparable to a human. Just wording emails and writing boilerplate computer-code isn't enough in my eyes. Especially since it even struggles to do that. It's the "general" that is missing.
Its a definition, but not an effective one in the sense that we can test and recognize it. Can we list all cognitive tasks a human can do? To avoid testing a probably infinite list, we should instead understand what are the basic cognitive abilities of humans that compose all other cognitive abilities we have, if thats even possible. Like the equivalent of a turing machine, but for human cognition. The Turing machine is based on a finite list of mechanisms and it is considered as the ultimate computer (in the classical sense of computing, but with potentially infinite memory). But we know too little about whether the limits of the turing machine are also limits of human cognition.
"It's at a human-level equivalent of intelligence when it makes enough profits" is certainly an interesting definition and, in the case of the C-suiters, possibly not entirely wrong.
This is just so they can announce at some point in the future that they've achieved AGI to the tune of billions in the stock market.
Except that it isn't AGI.
But OpenAI has received more than $13 billion in funding from Microsoft over the years, and that money has come with a strange contractual agreement that OpenAI would stop allowing Microsoft to use any new technology it develops after AGI is achieved
The real motivation is to not be beholden to Microsoft
That's not a bad way of defining it, as far as totally objective definitions go. $100 billion is more than the current net income of all of Microsoft. It's reasonable to expect that an AI which can do that is better than a human being (in fact, better than 228,000 human beings) at everything which matters to Microsoft.
Good observation. Could it be that Microsoft lowers profits by including unnecessary investments like acquisitions?
So it'd take a 100M users to sign up for the $200/mo plan. All it'd take is for the US government to issue vouchers for video generators to encourage everyone to become a YouTuber instead of being unemployed.
So they don't actually have a definition of a AGI they just have a point at which they're going to announce it regardless of if it actually is AGI or not.
Great.
I'm gonna laugh when Skynet comes online, runs the numbers, and find that starvation issues in the country can be solved by feeding the rich to the poor.
it would be quite trope inversion if people sided with the ai overlord
Why does OpenAI "have" everything and they just sit on it, instead of writing a paper or something? They have a watermarking solution that could help make the world a better place and get rid of some of the Slop out there... They have a definition of AGI... Yet, they release none of that...
Some people even claim they already have a secret AGI. Or at least ChatGPT 5 sure will be it. I can see how that increases the company's value, and you'd better not tell the truth. But with all the other things, it's just silly not to share anything.
Either they're even more greedy than the Metas and Googles out there, or all the articles and "leaks" are just unsubstantiated hype.
Because OpenAI is anything but open. And they make money selling the idea of AI without actually having AI.
Because they don’t have all the things they claim to claim to have, or it’s with significant caveats. These things are publicised to fuel the hype which attracts investor money. Pretty much the only way they can generate money, since running the business is unsustainable and the next gen hardware did not magically solve this problem.
They don't have AGI. AGI also won't happen for another laege amount of years to come
What they currently have is a bunch of very powerful statistical probability engines that can predict the next word or pixel. That's it.
AGI is a completely different beast to the current LLM flower leaves
Does anyone have a real link to the non-stalkerware version of:
https://www.theinformation.com/articles/microsoft-and-openais-secret-agi-definition
-and the only place with the reference this article claims to cite but doesn't quote?