this post was submitted on 09 Jul 2023
83 points (97.7% liked)
Programming
17534 readers
95 users here now
Welcome to the main community in programming.dev! Feel free to post anything relating to programming here!
Cross posting is strongly encouraged in the instance. If you feel your post or another person's post makes sense in another community cross post into it.
Hope you enjoy the instance!
Rules
Rules
- Follow the programming.dev instance rules
- Keep content related to programming in some way
- If you're posting long videos try to add in some form of tldr for those who don't want to watch videos
Wormhole
Follow the wormhole through a path of communities [email protected]
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
~~Pit~~ Mutation testing is useful. It basically tests how effective your tests are and tells you missed conditions that aren’t being tested.
For Java: https://pitest.org
Edit: corrected to the more general name instead of a specific implementation.
Every enterprise I’ve consulted for that had code coverage requirements was full of elaborate mock-heavy tests with a single Assert.NotNull at the end. Basically just testing that you wrote the right mocks!
That’s exactly the sort of shit tests mutation testing is designed to address. Believe me it sucks when sonar requires 90% pit test pass rate. Sometimes the tests can get extremely elaborate. Which should be a red flag for design (not necessarily bad code).
Anyway I love what pit testing does. I hate being required to do it, but it’s a good thing.
Yeah. All the same. Create lazy metric - get lazy and useless results.
This is really interesting, I've never heard of such an approach before; clearly I need to spend more time reading up on testing methodologies. Thank you!
I'd never heard of mutation testing before either, and it seems really interesting. It reminds me of fuzzing, except for the code instead of the input. Maybe a little impractical for some codebases with long build times though. Still, I'll have to give it a try for a future project. It looks like there's several tools for mutation testing C/C++.
The most useful tests I write are generally regression tests. Every time I find a bug, I'll replicate it in a test case, then fix the bug. I think this is just basic Test-Driven-Development practice, but it's very useful to verify that your tests actually fail when they should. Mutation/Pit testing seems like it addresses that nicely.
We are running the above pi tests with an extra (Gradle based) build plugin so that it only runs mutations for the changed lines in that pull request. That drastically reduces runtime and still ensures that new code is covered to the mutation test level we want. Maybe something similar can be done for C or C++ projects.
I'm currently working on a C++ project that takes about 10 minutes to do a clean build (Plus another 5 minutes in CI to actually run the tests). Incremental builds are set up, and work quite well, but any header changes can easily result in a 5 minute incremental build.
As much as I'd like to try, I don't see mutation testing being worthwhile for this project outside of maybe a few isolated modules that could be tested independently. It's a highly interconnected codebase, and I've personally reviewed (or written) every test, so I already know they're of fairly high quality, but it would be nice to be able to measure.
Does something like this exist for Python?
https://mutatest.readthedocs.io/en/latest/
Oh sweet! This introduced a whole new world to me. Also seeing mutmut, is one better than the other?