this post was submitted on 19 Oct 2023
539 points (96.5% liked)

Technology

60324 readers
3043 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 2 years ago
MODERATORS
 

Black Mirror creator unafraid of AI because it’s “boring”::Charlie Brooker doesn’t think AI is taking his job any time soon because it only produces trash

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 14 points 1 year ago* (last edited 1 year ago) (2 children)

I think the breakthroughs in AI have largely happened now as we're reaching a slowndown and an adoption phase

The research has been stagnating. Video with temporal consistency doesn't want to come, voice is still perceptibly non-human, openai is assembling 5 models in a trenchcoat to make gpt do images and it passing as progress, ...

Companies and people are adopting what is already there for new applications, it's getting more common to see neural network models in lots of solutions where the tech adds good value and is applicable, but the models aren't breaking new grounds like in 2021 anymore

The only new fundamental developments i can recall in the core technology is the push for smaller models trainable on way less data and that can be specialized for certain applications. Far away from the shock we all got when AI suddenly learned to draw a picture from a prompt

[–] [email protected] 9 points 1 year ago

I want to note that everything you talk about is happening on the scales of months to single years. That's incredibly rapid pace, and also too short of a timeframe to determine true research trends.

Usually research is considered rapid if there is meaningful progression within a few years, and more realistically about a decade or so. I mean, take something like real time ray tracing, for comparison.

When I'm talking about the future of AI, I'm thinking like 10-20 years. We simply don't know enough about what is possible to say what will happen by then.