this post was submitted on 22 Dec 2024
74 points (98.7% liked)
Programming
17765 readers
424 users here now
Welcome to the main community in programming.dev! Feel free to post anything relating to programming here!
Cross posting is strongly encouraged in the instance. If you feel your post or another person's post makes sense in another community cross post into it.
Hope you enjoy the instance!
Rules
Rules
- Follow the programming.dev instance rules
- Keep content related to programming in some way
- If you're posting long videos try to add in some form of tldr for those who don't want to watch videos
Wormhole
Follow the wormhole through a path of communities [email protected]
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Neat. Most of that went over my head but always good to see more performance out of existing tech.
Basically it’s just an optimization of a double nested for loop. It’s a way to avoid running the inner for loop when it is known there will be no hit.
This is useful when we for example want to find all product orders of customers in a particular country. The way we can do this is to first filter all customers by their country, and then match orders by the remaining customers. The matching step is the double for loop.
Something like this:
Many orders won’t match a customer in the above query, so we want to single out these orders before we run the expensive inner for loop. The way they do it is to create a cache using a Bloom filter. I’d recommend looking it up, but it’s a probabilistic cache that’s fast and space efficient, at the cost of letting through some false positives. With this particular use case it’s ok to have some false positives. The worst thing that can happen is that the inner for loop is run more times than necessary.
The final code is something like this:
Edit: this comment probably contain many inaccuracies, as I’ve never done this kind of stuff in practice, so don’t rely too much on it.
That's certainly not how I would implement any of this in Python.
You can, of course, feel free to show us how you’d implement this in python. It’s fine to say you would do it differently, but don’t stop there, show how/what you would do differently. Add to the discussion, like the person you were replying to did, don’t detract.
It’s just example code to demonstrate the idea of the optimization explained in the article. I also based my code on the code used in the article (and made some major changes to better fit my attempt of explanation).
that's what's in the article tho
I haven't read the article but I work with Bloom filters at work sometimes.
Bloom filters basically tell you "this thing might be present" or "this thing is definitely not present".
If you're looking for a piece of data in a set of large files, being able to say "this data is definitely not in this file" saves you a bunch of time because you can skip over the file instead of searching through the whole thing just to figure out what you're looking for isn't there.