this post was submitted on 02 Dec 2024
620 points (95.6% liked)
Science Memes
11299 readers
2506 users here now
Welcome to c/science_memes @ Mander.xyz!
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.
Rules
- Don't throw mud. Behave like an intellectual and remember the human.
- Keep it rooted (on topic).
- No spam.
- Infographics welcome, get schooled.
This is a science community. We use the Dawkins definition of meme.
Research Committee
Other Mander Communities
Science and Research
Biology and Life Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- !reptiles and [email protected]
Physical Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
Humanities and Social Sciences
Practical and Applied Sciences
- !exercise-and [email protected]
- [email protected]
- !self [email protected]
- [email protected]
- [email protected]
- [email protected]
Memes
Miscellaneous
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
That's 11.2 km/s and 42.1 km/s.
Also, even if the manhole cover was going at above 12 km/s the trajectory has to be right for that to result in orbit. Most paths it would take would result in it going up and then coming back down again. Similarly, if somehow it did manage more than 50 km/s and wasn't destroyed in the atmosphere, it might have the velocity to escape the sun's gravity, but probably wouldn't be on the right path to do it. Most likely it would fall into the sun.
So, assuming the 125,000 mph (55 km/s) velocity is correct, the most likely outcome is that it was a reverse-meteor, something that burned up going up through the atmosphere, not down. And even if it did have enough speed to get out of the atmosphere, and there was enough of it left, it most likely fell right back down through the atmosphere somewhere else, either burning up on re-entry or hitting the ground (or the water) somewhere else.
Ignoring that it burned up and ignoring losses due to drag if it somehow didn't. Isn't the point of escape velocity that it explicitly won't come back down.iar least not on earth. Your trajectory won't matter as you have enough velocity to escape the gravity of earth and will orbit the sun. Further if you managed the solar system escape velocity you will end up orbiting the galactic core. Trajectory doesn't matter if you have escape velocity. Correct trajectory just minimizes the delta v needed to reach that escape velocity.
At least that's all my recollection.
Escape velocity means you could stay in orbit. It doesn't guarantee anything if you launch at the wrong angle.