this post was submitted on 16 Nov 2024
986 points (86.5% liked)

Science Memes

11253 readers
2911 users here now

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don't throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

founded 2 years ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 16 points 1 week ago (3 children)

Storage is a solvable problem. Whereas we don't have the resources to power the world with nuclear plants.

[–] [email protected] 23 points 1 week ago (3 children)

Storage is a solvable problem

I'm not convinced it is. Storage technologies exist for sure, but the general public seems to grossly underestimate the scale of storage required to match grid demand and renewables only production.

[–] [email protected] 16 points 1 week ago (2 children)

I think you underestimate how much storage power is currently being build and how many different technologies are available. In Germany alone there currently are 61 projects planed and in the approval phase boasting a combined 180 Gigawatts of potential power until 2030. Those of them that are meant to be build at old nuclear power plants (the grid connection is already available there) are expected to deliver 25% of the necessary storage capacity. In addition all electric vehicles that are assumed to be on the road until 2030 add another potential 100GW of power.

Of course these numbers are theoretical as not every EV will be connected to a bidirectional charger and surely some projects will fail or delay, however given the massive development in this sector and new, innovative tech (not just batteries but f.e. a concrete ball placed 800m below sea level, expected to store energy extremely well at 5.8ct / kilowatt) there's very much reason for optimism here.

It's also a funny sidenote that France, a country with a strong nuclear strategy, frequently buys power from Germany because it's so much cheaper.

[–] [email protected] 17 points 1 week ago (1 children)

Another important note about France: They are the second country alongside Germany heavily pushing for an upscaled green hydrogen market in the EU. Because -just like renewables- nuclear production doesn't match the demand pattern at all. Thus it's completely uneconomical without long-term storage.

The fact that we seem to constantly discuss nuclear vs. renewables is proof that it's mostly lobbying bullshit. Because in reality they don't compete. It's either renewables+short-term storage+long-term-term storage or renewables+nuclear+long-term storage. Those are the only two viable models.

[–] [email protected] 7 points 1 week ago* (last edited 1 week ago) (3 children)

upscaled green hydrogen market

That's been the talk in town for 40 years now. Green hydrogen has never gotten beyond proof-of-concept.

The fact that we seem to constantly discuss nuclear vs. renewables is proof that it's mostly lobbying bullshit.

Sadly, it's because the political green parties available to me are anti-nuclear.

It's either renewables+short-term storage+long-term-term storage or renewables+nuclear+long-term storage.

Why is nuclear+short term storage not an option, according to you?

[–] [email protected] 2 points 1 week ago* (last edited 1 week ago)

Why is nuclear+short term storage not an option

Because cold winter days exist. Yes you can only build nuclear capacities for the average day and then short-term storage to match the demand pattern. But you would need to do so for the day(s) of the year with the highest energy demand, some cold winter work day. What do you do with those capacities the remaining year as throttling nuclear down is not really saving much costs (most lie in construction and deconstruction)?

[–] [email protected] 0 points 1 week ago (1 children)

Due to the recent nuclear hype uranium price will rise and keep in mind that the resource will not exceed a century.

[–] [email protected] 1 points 4 days ago

Downvote and DELETE all good.

[–] [email protected] 5 points 1 week ago* (last edited 1 week ago) (3 children)

It's not just power that's needed (MW), also stored energy (MWh).

Germany consumes on average 1.4TWh of electricity a day (1). Imagine bridging even a short dunkelflaute of 2 days.

Worldwide lithium ion battery production is 4TWh a year (2).

It's also a funny sidenote that France, a country with a strong nuclear strategy, frequently buys power from Germany because it's so much cheaper.

Isn't that normal? The problems with renewables isn't that they generate cheap power, when they are generating. Today windmills even need to be equipped with remote shutdown, to prevent overproduction.

The problems arise when they aren't generating.

[–] [email protected] 2 points 1 week ago (1 children)

Your estimation goes way off because you still believe lithium ion to be the only viable solution. By now Sodium-Ion batteries are already installed even in EVs and can be produced without any critical resource like lithium.

And then of course there are all the other storage solution. Like I said, there even are storage solutions like concrete balls. Successfully tested in 2016, here an article from 2013.

By now it wouldn't be wise to stifle this enormous emerging market of various technologies by using expensive, problematic technology (not just because the biggest producer of fuel rods is Russia).

[–] [email protected] 0 points 1 week ago

I don't think lithium ion is the only storage technology. I was using it for scale.

The most cost effective storage is pumped storage. But even that wouldn't reach the scale necessary.

6 MWh pumped storage proof-of-concept won't l, either.

[–] [email protected] 1 points 1 week ago (1 children)

The watthours is what gas is for. Germany's pipeline network alone, that's not including actual gas storage sites, can store three months of total energy usage.

...or at least that's the original plan, devised some 20 years ago, Fraunhofer worked it all out back then. It might be the case that banks of sodium batteries or whatnot are cheaper, but yeah lithium is probably not going to be it. Lithium's strength is energy density, both per volume and by weight, and neither is of concern for grid storage.

Imagine bridging even a short dunkelflaute of 2 days.

That's physically impossible for a place the size of Germany, much less Europe.

[–] [email protected] -1 points 1 week ago* (last edited 1 week ago) (1 children)

is what gas is for

Wouldn't it be better to go fossil free. Given, you know, climate change. And the fact that the gas needs to be shipped all the way from the US.

That's physically impossible for a place the size of Germany, much less Europe.

Unless we use a different technology, that is not renewables + storage?

[–] [email protected] 1 points 1 week ago (1 children)

Wouldn’t it be better to go fossil free. Given, you know, climate change.

Gas can be synthesised and we're going to have to do that anyway for chemical feedstock. Maintaining backup gas plant capacity is cheaper than you think, they don't need much maintenance if they're not actually running.

That’s physically impossible for a place the size of Germany, much less Europe.

Unless we use a different technology, that is not renewables + storage?

It's not technology it's physics. It is impossible for there to be no wind anywhere, at least as long as the sun doesn't explode and the earth continues to rotate and an atmosphere exists. If any of those ever fail electricity production will be the least of our worries.

Technology comes into play when it comes to shovelling electricity from one end of the continent to the other and yes we need more interconnects and beefier interconnects but it's not like we don't know how to do that, or don't already have a Europe-wide electricity grid. The issues are somewhere in between NIMBYism regarding pylons and "but we don't want to pay for burying the cable earthworks are expensive".

[–] [email protected] -1 points 1 week ago* (last edited 1 week ago) (1 children)

Gas can be synthesised

When's that going to happen? Right after the green hydrogen revolution?

They've been saying that for decades. It isn't happening. It's just natural gas.

It's not technology it's physics

Sorry, I didn't think someone would deny the existance of dunkelflautes. It's currently happening in Germany. (1).

[–] [email protected] 1 points 1 week ago (1 children)

When’s that going to happen? Right after the green hydrogen revolution?

Already happening, on a small (but industrial) scale. You can buy that stuff off the shelf, but it's still on the lower end of the sigmoid. Most new installations right now will be going to Canada and Namibia, we'll be buying massive amounts of ammonia from both.

Sorry, I didn’t think someone would deny the existance of dunkelflautes. It’s currently happening in Germany.

Yes and elsewhere in Europe the wind is blowing. Differences in solar yields are seasonal (that's what those three months storage are for, according to Fraunhofer's initial plans), but reversed on the other side of the globe, and Germany would be better situated to tank differences in local wind production all by itself if e.g. Bavaria didn't hinder wind projects in their state. The total energy the sun infuses into the earth does change a bit over time, but that's negligible. In principle pretty much zero storage is needed as long as there's good enough interconnectivity.

...meanwhile, we'll probably have the first commercial fusion plant in just about the mean construction time of a fission plant.

[–] [email protected] 0 points 1 week ago (1 children)

Already happening, on a small (but industrial) scale.

I mean, isn't that the problem with all storage technologies?

Is the goal of renewables to do 90% of the year with renewables, and 10% of the year with fossil fuel?

Hopefully one day, the last 10% is "green hydrogen", "syngas", "synpetrol"? That's how the intermittancy problem is "solved"?

[–] [email protected] 2 points 1 week ago (1 children)

In essence, yes. And we need the hydrogen/ammonia/methane/methanol/whatever anyway to do chemistry with, so we'll have to produce them in some renewable way anyway, and at scale. Using them in peaker plants is only a fraction of the total use.

Even with fusion up and running we're going to do hydrolysis. You can run a car on electricity, or domestic heating, also aluminium smelting, but not a blast furnace to reduce steel nor a chemical industry. Hydrogen, in one form or another, is the answer to all of those things. As things currently stand the market is in its infancy but the first pipelines are getting dedicated to hydrogen, the first blast furnaces made for operation with hydrogen are up and running... and the hydrogen mostly comes from fossil gas. It's a bit of a chicken and egg problem you need demand to have supply but you need supply to have demand, so kick-starting the demand side by supplying it fossil hydrogen makes a lot of economical sense, that means that the supply investments can go big and be sure that they'll have customers from day one.

[–] [email protected] -1 points 1 week ago (1 children)

Hydrogen, in one form or another, is the answer to all of those things

No it isn't? What makes steel steel is the carbon inbetween Fe.

Green hydrogen has been promised to me my whole life. Sad to day I now understand your point of view. Natural gas wins.

[–] [email protected] 0 points 1 week ago* (last edited 1 week ago) (1 children)

What makes iron is the lack of O in Fe~3~O~4~ (that's magnetite, other ores are similar). Carbon for alloying is not an issue it can be easily covered by biomass, you smelt the magnetite by combining it with hydrogen resulting in iron and (very hot) water, no carbon involved, then you add carbon, something like 2% thereabouts, to get steel. Add too much and you get cast iron. The overwhelming majority of coke used in the coke process is not used for alloying, but smelting and reducing the iron. That part of the steel making process is completely decarbonised in the hydrogen process, and the carbon that's used in alloying, well, it's not in the atmosphere is it.

You can rip the oxygen off iron ore with electricity but that's less energy-efficient than taking a detour via electrolysis. It's different with aluminium, there using electricity directly is more efficient.

Sad to day I now understand your point of view. Natural gas wins.

If you think that's what I'm saying then no, you don't understand my POV.

[–] [email protected] 1 points 1 week ago (1 children)

what makes steel

Vs

What makes iron

[–] [email protected] 2 points 1 week ago* (last edited 1 week ago)

OMG yes I said "blast furnace to reduce steel". I meant "to reduce iron [to produce steel]". Obviously: What else would you use hydrogen for in a blast furnace?

But "reduce steel" is still, at least colloquially, correct for recycling steel: Scrap has rust on it so it also needs to be reduced. Which you would've realised instead of trying to turn this into a silly gotcha if you knew what you were talking about.

Go ahead, do tell me about your plan on how to produce steel, from ore, without getting fossil fuels or hydrogen involved. Charcoal? Could work, but I don't think the economics make sense.

[–] [email protected] 0 points 1 week ago* (last edited 1 week ago)

Another problem arises when you're generation 63.688 after today and still have to keep maintaining deadly waste from nations that don't exist anymore, because they produced "cheap" and "clean" energy for a couple of decades.
Come on, Jesus died like 2000 years ago, this stuff will haunt us for centuries. Arguing in favor of something this unpredictable is just selfish, stupid and shortsighted.

[–] jaemo 2 points 1 week ago

Ok but maybe a counterpoint is we are overestimating the ability of the atmosphere and ocean to absorb CO2 and maintain a habitable planet. I'd rather store isotopes in the earth (where they came from anyway) than carbon in the air.

[–] [email protected] 2 points 1 week ago* (last edited 1 week ago) (1 children)

Again: This is just the beginning! We're like ~~five years into~~ at the beginning of an energy revolution and you are drumming against it because you're "not convinced", rooting for stuff we already discarded because it's uncontrollable and will poison our planet for centuries. Get out of the way, boomer!

Germany has over 400 MW of solar-plus-storage projects under development, with notable installations like a 100 MW/200 MWh battery system in Bavaria. This is way more than even the green minister of economic affairs set as a goal for 2045. California leads globally with 6,600 MW of battery storage already operational and an additional 1,900 MW expected by year-end, totaling 8,500 MW. By 2045, California aims to expand its capacity to 52,000 MW. Australia is also scaling rapidly, with around 9 GW of utility-scale battery projects underway or completed. Soon EV batteries get to feed energy back into the grid, we're becoming one huge decentralized batterie mosaic. It's gonna be beautiful!

[–] [email protected] 1 points 1 week ago (1 children)

We're like five years into an energy revolution

Exactly, after working on it for over 30.

It seems like theyre not even planning on going fossil free.

That quote, again, not mentioning stored energy. How do they not understand that storage needs to be specified in both power and energy?

[–] [email protected] 1 points 1 week ago* (last edited 1 week ago) (1 children)

The fossil industry, which earns 1 billion dollars a day since the 1970s, won't go down without a fight. They are very powerful, able to start wars and overthrow governments. These fossil destroyers know they are dying, but they will fight back to make money as long as possible. The best we can do is drain their business model by going renewable, and fast. Nuclear is not an option anymore, they know that as well, it's already way too expensive. But they use it anyway to buy some time. Making more money while we are debating instead of building renewables and batteries like our lives depend on it.
I always imagine Henry Ford after building his first cars. People would laugh at him: "And how do we fuel these?! You want to pave every road and build a web of gas stations all over or country? You are insane!"

[–] [email protected] 1 points 1 week ago (1 children)

it's already way too expensive.

If you don't account for the storage problem, renewables look like a cheap solution, indeed. And you end up with renewables + huge reliance on fossil fuel.

This is an ideal scenario for the fossil industry.

[–] [email protected] 1 points 1 week ago

But storage is getting cheaper and cheaper as we move further into renewables. The storage problem is not unfixable, it's being solved just like the gas station and road paving problem was solved during the automobile revolution. The beginning of something is always messy, problems and mistakes happen. But we are a clever species and we are working on it. Fuck these men who want to keep burning our planet, I won't be discouraged.

[–] [email protected] 5 points 1 week ago

The second half if most important. It doesn’t produce enough electricity. Renewables are getting cheaper and cheaper and are taking up the mantle to take over majority of power production in some nations. But it is harder to monetize and can be democratized and made pretty easily. It’s like weed. It can be taken away from bigger producers and therefore there is significant push back/lobbying against it.

[–] [email protected] 1 points 1 week ago* (last edited 1 week ago)

Storage is a solvable problem.

Not in this economy. We need change in consumption too. Make loads opportunistic. Have extra energy - heat more water. Or heat homes. There was video on Technology Connected about it.