this post was submitted on 03 Nov 2024
265 points (86.3% liked)

Science Memes

11586 readers
448 users here now

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don't throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

founded 2 years ago
MODERATORS
 

Tap for spoilerThe bowling ball isn’t falling to the earth faster. The higher perceived acceleration is due to the earth falling toward the bowling ball.

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 6 points 2 months ago* (last edited 2 months ago) (1 children)

This may be a stupid question, but: assuming an object (the bowling ball) is created from materials found on Earth and that it remains within the gravity well of Earth from material procurement stage to the point where it is dropped, wouldn't the acceleration of the Earth towards the object be kind of a null considering the whole timeline of events? I mean, I get the distinction of higher mass objects technically causing the Earth to accelerate towards them faster if we're talking a feather vs a bowling ball that both originated somewhere else before encountering Earth's gravity well in a vacuum, it just seems kind of weird to consider Earth's acceleration towards objects that are originating and staying within its gravity well?

[–] [email protected] 5 points 2 months ago

I didn’t think about that! If the object was taken from earth then indeed the total acceleration between it and earth would be G M_total / r^2, regardless of the mass of the object.