this post was submitted on 03 Nov 2024
265 points (86.3% liked)
Science Memes
11586 readers
483 users here now
Welcome to c/science_memes @ Mander.xyz!
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.
Rules
- Don't throw mud. Behave like an intellectual and remember the human.
- Keep it rooted (on topic).
- No spam.
- Infographics welcome, get schooled.
This is a science community. We use the Dawkins definition of meme.
Research Committee
Other Mander Communities
Science and Research
Biology and Life Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- !reptiles and [email protected]
Physical Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
Humanities and Social Sciences
Practical and Applied Sciences
- !exercise-and [email protected]
- [email protected]
- !self [email protected]
- [email protected]
- [email protected]
- [email protected]
Memes
Miscellaneous
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Yes, the earth accelerates toward the ball faster than it does toward the feather.
Wouldn’t this be equally offset by the increase in inertia from their masses?
If your bowling ball is twice as massive, the force between it and earth will be twice as strong. But the ball’s mass will also be twice as large, so the ball’s acceleration will remain the same. This is why g=9.81m/s^2 is the same for every object on earth.
But the earth’s acceleration would not remain the same. The force doubles, but the mass of earth remains constant, so the acceleration of earth doubles.
I wonder how many frames per... picosecond you'd need to capture that on camera... And what zoom level you'd need to see it.
I think the roughness of the surface of the bowling ball would have a bigger impact on the time, in that the surface might be closer at some points if it were to rotate while falling.
Considering the mass of the ~~earth~~ (?) moon, I wouldn't be surprised if it'd be nearly impossible to capture a difference between a feather or bowling ball. You might have to release them at 100m or 1000m above the surface, but then maybe the moons miniscule atmosphere or density variances will have more of an effect.
But if you're dropping them at the same time right next to each other, the earth is so large they would functionally be one object and pull the earth at the same combined acceleration.