this post was submitted on 15 Oct 2024
51 points (84.0% liked)
Cybersecurity
5976 readers
152 users here now
c/cybersecurity is a community centered on the cybersecurity and information security profession. You can come here to discuss news, post something interesting, or just chat with others.
THE RULES
Instance Rules
- Be respectful. Everyone should feel welcome here.
- No bigotry - including racism, sexism, ableism, homophobia, transphobia, or xenophobia.
- No Ads / Spamming.
- No pornography.
Community Rules
- Idk, keep it semi-professional?
- Nothing illegal. We're all ethical here.
- Rules will be added/redefined as necessary.
If you ask someone to hack your "friends" socials you're just going to get banned so don't do that.
Learn about hacking
Other security-related communities [email protected] [email protected] [email protected] [email protected] [email protected]
Notable mention to [email protected]
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I think Schneier wrote this well before quantum computers were a reality - did he miss something fundamental in regards to them? Quantum computers are relatively new but the theory behind them is nearly a century old.
I'm not a physicist but quantum particles were still considered to be matter the last time I checked.
The issue here is that Schneier is discussing brute force forward computation of cryptography (IIRC of AES). Quantum computers don't iteratively attack primes by attempting to compute all possible primes. The current conventional computer attacks against RSA also aren't brute force hence why the advised size of an RSA key right now is 4096 bits.
This calculation only holds if there is no faster way than brute force iterating the entire key space.