this post was submitted on 05 Sep 2024
53 points (93.4% liked)
Programming
17484 readers
48 users here now
Welcome to the main community in programming.dev! Feel free to post anything relating to programming here!
Cross posting is strongly encouraged in the instance. If you feel your post or another person's post makes sense in another community cross post into it.
Hope you enjoy the instance!
Rules
Rules
- Follow the programming.dev instance rules
- Keep content related to programming in some way
- If you're posting long videos try to add in some form of tldr for those who don't want to watch videos
Wormhole
Follow the wormhole through a path of communities [email protected]
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
This doesn't seem overly useful.
It's a list taken out of a bunch of books with no regard for how something can be the best path in one language and a smell in another language.
Look at this page for example: https://luzkan.github.io/smells/imperative-loops
It suggests using functional loop methods (
.map()
,.reduce()
,.filter()
) instead of using imperative loops (for
,for in
,for each
) but completely disregards the facts that imperative loops also have access to thebreak
,continue
, andreturn
keywords to improve performance.For example: If I have an unsorted list of 1000 cars which includes a whole bunch of information per car (e.g. color, year manufactured, etc...), and I want to know if there were any cars were manufactured before the year 1980, I can run an imperative loop through the list and early return true if I find one, and only returning false if I haven't found one by the end of the list.
If the third car was made in 1977, then I have only iterated through 3 cars to find my answer.
But if I were to try this with only functional loops, I would have to iterate through all 1000 cars before I had my answer.
A website with blind rules like this is going to lead to worse code.
That’s a pretty bad example since most functional frameworks include an any or some function that returns early.
..what? At least with Java Streams or Kotlin Sequences, they absolutely abort early with something like
.filter().first()
.Same in Python, Rust, Haskell and probably many others.
But apparently JS does work that way, that is its
filter
always iterates over everything and returns a new array and not some iterator object.The old methods on Array will eagerly evaluate all elements. But JS has a new Iterator type with methods that works lazily instead.
Ya, streams may seem tedious (why do I have to call stream and collect?), but it’s like that for performance (and probably backwards compatibility).
If writing readable code is not peformant, then the language implementation needs to be fixed.
Honestly, it is much more code to use loop with non-local control like break, continue etc. (variable initialization, append, variable mutation in loops...) than just calling a collect function (which I assume just means to_list). In the above example, in most programming language I know, you don't even need to collect the result into a list.
Not to mention, large loops with non-local control is a breeding ground for spegatti code. Because you no longer have a consistent exit point to the loop, thus making the semantics hard o reason about.
In many languages, there are type class / trait / interfaces (whatever you want to call them) that allows lazy structures to share the same API as strict ones.
Yeah, in Java calling
first()
on a stream is the same as an early return in a for-loop, where for each element all of the previous stream operations are applied first.So the stream operation
is equivalent to doing the following imperatively
Not to mention Kotlin actually supports non-local returns in lambdas under specific circumstances, which allows for even more circumstances to be expressed with functional chaining.
These are not quite equivalent. In terms of short-circuiting yeah they both short-circuit when they get the value. But the latter is returning from the current function and the former is not. If you add a return to that first example then they are equivalent. But then cannot be used in line. Which is a nice advantage to the former - it can be used inline with less faff as you can just assign the return to a value. The latter needs you to declare a variable, assign it and break from the loop in the if.
Personally I quite like how the former requires less modification to work in different contexts and find it nicer to read. Though not all logic is easier to read with a stream, sometimes a good old for loop makes the code more readable. Use which ever helps you best at each point. Never blindly apply some pattern to every situation.
Well yes, I was simplifying because I wanted to address the main (incorrect) criticism by @[email protected]. I agree with your comment
@mbtrhcs @spartanatreyu well Java Streams try to, but it's not too hard to get them to accidentally process too much, or even blow up completely.
(This isn't a comment on coding styles or the article though)
Also, Effective Java specifically says to use streams judiciously and prefer traditional for loops in general.