this post was submitted on 03 Apr 2024
1026 points (99.4% liked)

Technology

60584 readers
3555 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 2 years ago
MODERATORS
 

A judge in Washington state has blocked video evidence that’s been “AI-enhanced” from being submitted in a triple murder trial. And that’s a good thing, given the fact that too many people seem to think applying an AI filter can give them access to secret visual data.

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 13 points 9 months ago (1 children)

No computer algorithm can accurately reconstruct data that was never there in the first place.

What you are showing is (presumably) a modified visualisation of existing data. That is: given a photo which known lighting and lens distortion, we can use math to display the data (lighting, lens distortion, and input registered by the camera) in a plethora of different ways. You can invert all the colours if you like. It's still the same underlying data. Modifying how strongly certain hues are shown, or correcting for known distortion are just techniques to visualise the data in a clearer way.

"Generative AI" is essentially just non-predictive extrapolation based on some data set, which is a completely different ball game, as you're essentially making a blind guess at what could be there, based on an existing data set.

[–] [email protected] -2 points 9 months ago (2 children)

making a blind guess at what could be there, based on an existing data set.

Here's your error. You yourself are contradicting the first part of your sentence with the last. The guess is not "blind" because the prediction is based on an existing data set . Looking at a half occluded circle with a model then reconstructing the other half is not a "blind" guess, it is a highly probable extrapolation that can be very useful, because in most situations, it will be the second half of the circle. With a certain probability, you have created new valuable data for further analysis.

[–] [email protected] 3 points 9 months ago (1 children)

But you are not reporting the underlying probability, just the guess. There is no way, then, to distinguish a bad guess from a good guess. Let's take your example and place a fully occluded shape. Now the most probable guess could still be a full circle, but with a very low probability of being correct. Yet that guess is reported with the same confidence as your example. When you carry out this exercise for all extrapolations with full transparency of the underlying probabilities, you find yourself right back in the position the original commenter has taken. If the original data does not provide you with confidence in a particular result, the added extrapolations will not either.

[–] [email protected] 1 points 9 months ago* (last edited 9 months ago)

And then circles get convictions so even if the model did somehow start off completely unbiassed people are going to start feeding it data that weighs towards finding more circles since a prosecution will be used as a 'success' to feed back into the model and 'improve' it.

[–] [email protected] 2 points 9 months ago* (last edited 9 months ago)

Looking at a half circle and guessing that the "missing part" is a full circle is as much of a blind guess as you can get. You have exactly zero evidence that there is another half circle present. The missing part could be anything, from nothing to any shape that incorporates a half circle. And you would be guessing without any evidence whatsoever as to which of those things it is. That's blind guessing.

Extrapolating into regions without prior data with a non-predictive model is blind guessing. If it wasn't, the model would be predictive, which generative AI is not, is not intended to be, and has not been claimed to be.