Benjamin_Kenobi

joined 1 year ago
MODERATOR OF
 

One of the brightest nebulae in the night sky is Messier 42, the Orion Nebula, located south of Orion’s belt. At its core is the young Trapezium Cluster of stars, the most massive of which illuminate the surrounding gas and dust with their intense ultraviolet radiation fields, while protostars continue to form today in the OMC-1 molecular cloud behind.

https://www.flickr.com/photos/nasawebbtelescope/53230009083/in/album-72177720305127361/

 

Herbig-Haro (HH) objects are luminous regions surrounding newborn stars, formed when stellar winds or jets of gas spewing from these newborn stars form shock waves colliding with nearby gas and dust at high speeds. This image of HH 211 from NASA’s James Webb Space Telescope reveals an outflow from a Class 0 protostar, an infantile analog of our Sun when it was no more than a few tens of thousands of years old and with a mass only 8% of the present-day Sun (it will eventually grow into a star like the Sun).

 

NASA’s James Webb Space Telescope has begun the study of one of the most renowned supernovae, SN 1987A (Supernova 1987A). Located 168,000 light-years away in the Large Magellanic Cloud, SN 1987A has been a target of intense observations at wavelengths ranging from gamma rays to radio for nearly 40 years, since its discovery in February of 1987. New observations by Webb’s NIRCam (Near-Infrared Camera) provide a crucial clue to our understanding of how a supernova develops over time to shape its remnant.

https://www.nasa.gov/feature/goddard/2023/webb-reveals-new-structures-within-iconic-supernova

 

Editor’s Note: This post highlights data from Webb science in progress, which has not yet been through the peer-review process.

NASA’s James Webb Space Telescope obtained images of the Ring Nebula, one of the best-known examples of a planetary nebula. Much like the Southern Ring Nebula, one of Webb’s first images, the Ring Nebula displays intricate structures of the final stages of a dying star. Roger Wesson from Cardiff University tells us more about this phase of a Sun-like star’s stellar lifecycle and how Webb observations have given him and his colleagues valuable insights into the formation and evolution of these objects, hinting at a key role for binary companions.

https://blogs.nasa.gov/webb/2023/08/21/webb-reveals-intricate-details-in-the-remains-of-a-dying-star/

[–] [email protected] 2 points 1 year ago

Nice spot that!!

[–] [email protected] 2 points 1 year ago

I want to dub it "The Riddler Effect".

 

NASA’s James Webb Space Telescope has followed up on observations by the Hubble Space Telescope of the farthest star ever detected in the very distant universe, within the first billion years after the big bang. Webb’s NIRCam (Near-Infrared Camera) instrument reveals the star to be a massive B-type star more than twice as hot as our Sun, and about a million times more luminous.

[–] [email protected] 3 points 1 year ago

Hopefully they keep digging and finding even more cool things!

[–] [email protected] 4 points 1 year ago

It took 11 billion years for stretched boy's light to reach us. That amount of time staggers me!

 

A new image of the galaxy cluster known as “El Gordo” is revealing distant and dusty objects never seen before, and providing a bounty of fresh science. The infrared image, taken by NASA’s James Webb Space Telescope, displays a variety of unusual, distorted background galaxies that were only hinted at in previous Hubble Space Telescope images.

https://www.nasa.gov/feature/goddard/2023/webb-spotlights-gravitational-arcs-in-el-gordo-galaxy-cluster

[–] [email protected] 2 points 1 year ago

Fantastic image!

Seeing stars growing is so cool.

 

Water is essential for life as we know it. However, scientists debate how it reached the Earth and whether the same processes could seed rocky exoplanets orbiting distant stars. New insights may come from the planetary system PDS 70, located 370 light-years away. The star hosts both an inner disk and outer disk of gas and dust, separated by a 5 billion-mile-wide (8 billion kilometer) gap, and within that gap are two known gas-giant planets.

https://www.nasa.gov/feature/goddard/2023/webb-detects-water-vapor-in-rocky-planet-forming-zone

[–] [email protected] 4 points 1 year ago (1 children)

I second Jerboa.

 

The James Webb Space Telescope’s four scientific instruments are capable of examining the universe across a range of light called infrared, which is beyond the red end of the visible light rainbow (Webb also captures a little visible red as well). Infrared wavelengths are broken down into near-, mid-, and far-infrared ranges. Each instrument has unique features that allow astronomers to study a variety of astronomical objects in different ways.

[–] [email protected] 1 points 1 year ago

Thank you, and I'm glad you like it so far.

 

The James Webb Space Telescope has detected the earliest-known carbon dust in a galaxy ever.

Using the powerful space telescope, a team of astronomers spotted signs of the element that forms the backbone of all life in ten different galaxies that existed as early as 1 billion years after the Big Bang.

The detection of carbon dust so soon after the Big Bang could shake up theories surrounding the chemical evolution of the universe. This is because the processes that create and disperse heavier elements like this should take longer to build up in galaxies than the age of these young galaxies at the time the James Webb Space Telescope (JWST) sees them.

https://www.space.com/james-webb-space-telescope-1st-detection-of-diamond-like-carbon-dust-earliest-stars

 

Using the James Webb Space Telescope (JWST), an international team of astronomers has found compelling evidence that early galaxies were responsible for the reionization of the early universe. This is the process by which neutral hydrogen atoms are ionized, making the universe transparent to light at wavelengths that would have been absorbed by the atoms. The research was done by members of the EIGER collaboration, which is using the JWST’s Near Infrared Camera (NIRCam) to study light from quasars in the early universe.

https://physicsworld.com/a/jwst-finds-smoking-gun-evidence-of-early-galaxies-transforming-the-universe/

[–] [email protected] 1 points 1 year ago

I think it's so cool. Things like this really highlight the vastness of space.

[–] [email protected] 1 points 1 year ago

Hi, thanks for your comment.

This is a new community, and posts such as this one are to help drive engagement and discussion whilst it is still new.

There are no age restrictions for an article or images for this community.

 

NASA’s James Webb Space Telescope has delivered the deepest and sharpest infrared image of the distant universe so far. Webb’s First Deep Field is galaxy cluster SMACS 0723, and it is teeming with thousands of galaxies – including the faintest objects ever observed in the infrared.

https://www.nasa.gov/image-feature/goddard/2022/nasa-s-webb-delivers-deepest-infrared-image-of-universe-yet

 

In an enormous new image, NASA’s James Webb Space Telescope reveals never-before-seen details of galaxy group “Stephan’s Quintet”

https://www.nasa.gov/image-feature/goddard/2022/nasa-s-webb-sheds-light-on-galaxy-evolution-black-holes

[–] [email protected] 11 points 1 year ago

This is total donkey bollocks, and you're not very good at writing a story.

[–] [email protected] 4 points 1 year ago (1 children)

Lionel Richtea

[–] [email protected] 9 points 1 year ago (1 children)

I can't wait for the email chains back and forth that explain what was already explained on email number one.

Then getting a Teams call to explain.

view more: next ›