this post was submitted on 03 Dec 2023
407 points (99.5% liked)

196

16574 readers
2117 users here now

Be sure to follow the rule before you head out.

Rule: You must post before you leave.

^other^ ^rules^

founded 1 year ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 1 points 11 months ago* (last edited 11 months ago) (1 children)

What an interesting error to point out in support of pemdas.

Clearly the formatting of a paragraph of text in a textbook full of clearly and unambiguously written formulas discussing the very order of operations itself compared to the formatting of an actual formula diagram is going to be less clear. But here you've chosen to point to a discussion of why the order is irrelevant in the case under question.

Your example is the conclusion of a review of mathematics.

First we shall review some mathematics.

...

The actual order of differentiation is immaterial:

The fact that the example formula is written sloppy is irrelevant, because at no point is this going to be an actual formula meant to be solved, it's merely an illustration of why, in this case, the order of a particular operation is "immaterial".

Even if ∂^2f/∂y∂x is clearly written to mean ∂^2f/(∂y∂x), it doesn't matter because "∂2f/∂x∂y=∂2f/∂y∂x". So long as you're consistently applying pemdas, you're going to get the same answer whether you derive x first or y.

However, when it's time to discuss the actual formulas and equations being taught in the example text, clearly and unambiguously written formulas are illustrated as though copied from Ann illustration on a whiteboard instead of inserted into paragraphs that might have simply been transcribed from a lecture. Which, somewhat coincidentally, is exactly what your citation is.

[–] [email protected] 1 points 11 months ago

Under PEMDAS, ∂2f/∂x∂y = (∂2f/∂x) * ∂y = ∂2∂y/∂x