Since for at least 2010 we've had laptops with integrated GPUs inside the chipset. These GPUs have historically been very lacking (I'd say, extremely so, to the point that a Tiger Lake 11400H CPU, which is quite powerful, wouldn't reach 60fps on CSGO a 1080p with the iGPU. AMD SoCs fared better in that aspect, but are still very lacking, even in their most recent RDNA3-based iterations, due to the poor bandwidth these laptops usually ship with (at best, dual channel DDR5 ram, but mostly dual channel DDR4). As such, dedicated GPUs with their own GDDR6 RAM and big dies have been necessary for both laptops and desktops whenever performance is a requirement, and lowend dedicated GPUs have been considered for those manufacturers that want slim, performant laptops with a decent battery life.
At the same time, there have been 3 important milestones for the APU market:
- In 2007 the Xbox 360 shifted from a Dedicated GPU + CPU combo for a single GPU combining both in the same die. The PS3 still follows the usual architecture of separate GPU and CPU.
- Both Sony and Microsoft release the PS4 and Xbox One (and their future successors) with an APU combining both. The Xbox One is fed with DDR3 RAM (don't know how many channels) + a fast ESRAM, and it seems the bandwidth was a huge problem for them and part of the reason why it performed worse than the PS4.
- Apple released the Apple-silicon powered Macbooks, shipping powerful GPUs inside the laptops on a single die. Powerful at the expense of being extremely big chips (see the M2 Max and Ultra), and maybe not as powerful as a 3070 mobile in most cases, but still quite powerful (and pricey, but I wonder if this is because of Apple or because APUs are, for the same performance level, more expensive, we'll get to that).
- The Steam Deck is released, featuring a 4 cores/8threads CPU + RDNA2 GPU packed with a quad-channel DDR5 RAM at 5.5GHz, totalling 88GB/s.
Now, for price-sensitive products (such as the Steam Deck, or the other game consoles), APUs seem to be the way to go. You can even make powerful ones, as long as they have enough bandwidth. It'd seem to me that it'd be clear that APUs provide a much better bang for the buck for manufacturers and consumers, as long as they're paired with a nice memory architecture. I understand desktop PCs care about upgreadability and modularity, but why is gaming APUs not a thing in laptops/cheap gaming OEM Desktops? With 16gb 4-channel DDR5 or even GDDR6 RAM, those things would compete really well against game consoles, while avoiding all the duplicated costs that are incurred in when pairing a laptop with a DGPU. And in the end, laptops already have custom motherboards, so what's the issue at all? What are the reasons why even cheap gaming laptops pick RTX 3050's instead of having some love from AMD?
Bonus question: How come the DDR3 RAM at 1066MHz in the Xbox One is 68.3GB/s while the Steam Deck, with a much newer 5500MHz RAM and quad-channel is able to provide just 88GB/s?
It's actually less complicated than you're making it. The reason OEMs don't build those systems is because AMD and Intel don't make those chips. The reason AMD and Intel don't make large monolithic CPU/GPU designs for laptop is that up until now, the market just wasn't there for such a product. What segments are you targeting with a strong CPU/GPU combination?
What are the challenges with capturing any of these segments?
For segment 1, you're competing with Apple, who is an entrenched player in the market and very popular with software devs and creative professionals already. It's worth mentioning that Apple drives profitability on their devices via upsells on storage/memory and software services, not just margins on CPUs sold like AMD/Intel. It's also worth pointing out that AMD and Intel have been competing in this segment to varying degrees of success for as long as it has existed. Meteor Lake in particular is very clearly targeted at bringing Intel designs up to speed vs Apple silicon in idle and low load scenarios.
For 2, the biggest problem is that Nvidia is the entrenched player in the gaming GPU market. It's an uphill battle to convince buyers to pay a premium for an Intel/AMD only gaming laptop on the basis of improved battery life alone. Especially when an Nvidia equipped dGPU design will probably offer higher peak performance and most users will game plugged in anyways.
For segment 3, your users are already sacrificing battery life and portability for max performance. If they can get a faster product using separate CPU/GPU chips, they will take that option.
Segment 4 is the obvious one where such a design is already the best choice. I expect to see new products in this space consistently over the next couple years and for those chips to make their way into traditional laptops at some point.
I generally think that these large monolithic designs will see increased adoption in various segments over time, but it's going to be contingent on Intel/AMD delivering a product that is good enough to compete and win against Apple or Nvidia's offerings. I just don't think that's the case yet outside of niche markets.