this post was submitted on 29 Jun 2023
19 points (100.0% liked)
Programming
17503 readers
15 users here now
Welcome to the main community in programming.dev! Feel free to post anything relating to programming here!
Cross posting is strongly encouraged in the instance. If you feel your post or another person's post makes sense in another community cross post into it.
Hope you enjoy the instance!
Rules
Rules
- Follow the programming.dev instance rules
- Keep content related to programming in some way
- If you're posting long videos try to add in some form of tldr for those who don't want to watch videos
Wormhole
Follow the wormhole through a path of communities [email protected]
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Given these criteria, ggplot2 wins by a landslide. The API, thanks to R's nonstandard evaluation feature, is crazy good compared to whatever is available in Python. Not having to use numpy/pandas as inputs is a bonus as well, somehow pandas managed to duplicate many bad features of R's data frame and introduce its own inconsistences, without providing many of the good features¹. Styling defaults are decent, definitely much better than matplotlib's, and it's much easier to consistently apply custom styling. Future of ggplot2 is defined by downstream libraries, ggplot2 is just the core of the ecosystem, which, at this point, is mature and stable. Matplotlib's activity is mostly because that lack of nonstandard evaluation makes it more cumbersome to implement flexible APIs, and so it just takes more work. Both have very minimal support for interactive and web, it's easier to just use shiny/dask to wrap them than to force them alone to do web/interactive stuff. Which, btw, again I'd say shiny » dask if nothing but for R's nonstandard evaluation feature.
Note though that learning proper R takes time, and if you don't know it yet, you will underestimate time necessary to get friendly. Nonstandard evaluation alone is so nonstandard that it gives headaches to people who'd otherwise be skilled programmers already. matplotlib would hugely win by flexibility, which you apparently don't need—but there's always that one tiny tweak you would wish to be able to do. Also, it's usually much easier to use the platform's default, whatever publishing platform you're going to use.
As for me, if I have choice, I'm picking ggplot2 as a default. So far it was good enough for significant majority of my academic and professional work.
¹ Admitably numpy was not designed for data analysis directly, and pandas has some nice features missing from R's data frames.
Very nice and nonstandard answer, most appreciated.