this post was submitted on 05 Oct 2024
962 points (97.9% liked)
Science Memes
11253 readers
3266 users here now
Welcome to c/science_memes @ Mander.xyz!
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.
Rules
- Don't throw mud. Behave like an intellectual and remember the human.
- Keep it rooted (on topic).
- No spam.
- Infographics welcome, get schooled.
This is a science community. We use the Dawkins definition of meme.
Research Committee
Other Mander Communities
Science and Research
Biology and Life Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- !reptiles and [email protected]
Physical Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
Humanities and Social Sciences
Practical and Applied Sciences
- !exercise-and [email protected]
- [email protected]
- !self [email protected]
- [email protected]
- [email protected]
- [email protected]
Memes
Miscellaneous
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Friendly reminder that my AI-generated image detector is available to use free of charge here: https://huggingface.co/spaces/umm-maybe/sdxl-detector
Except these are very prone to false positives.
I find it very funny that people are so concerned about false positives. Models like these should really only be used as a screening tool to catch things and flag them for human review. In that context, false positives seem less bad than false negatives (although, people seem to demand zero error in either direction, and that's just silly).
Frankly, it sucks. Every input image I tried had over 90% artificial rating.
If you don't mind, I'd be interested to see the images you used. The broad validation tests I've done suggest 80-90% accuracy in general, but there are some specific categories (anime, for example) on which it performs kinda poorly. If your test samples have something in common it would be good to know so I can work on a fix.