this post was submitted on 14 Jun 2024
96 points (96.2% liked)

Asklemmy

44261 readers
908 users here now

A loosely moderated place to ask open-ended questions

Search asklemmy ๐Ÿ”

If your post meets the following criteria, it's welcome here!

  1. Open-ended question
  2. Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
  3. Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
  4. Not ad nauseam inducing: please make sure it is a question that would be new to most members
  5. An actual topic of discussion

Looking for support?

Looking for a community?

~Icon~ ~by~ ~@Double_[email protected]~

founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[โ€“] [email protected] 16 points 6 months ago* (last edited 6 months ago) (1 children)

Most of it sinks to the core in a molten body, actually, since it has an affinity for iron+nickel. The stuff that manages to stay behind tends to not stay chemically combined with rock because it's unreactive. Basically, when a blob of liquid (magma or water) is slowly cooling underground, you get individual crystals of various minerals precipitating, and since gold doesn't tend to combine with other elements, where it exists in quantity it's bound to find it's way into crystals of native metal. If it's a nuggets-type deposit this is what happened, plus maybe a period of weathering+sedimentation or two.

Concentrated ores of other uncommon or rare elements have a similar origin, just obviously with different chemistries. The exact history of each gold deposit will very. Some are probably associated with core-material asteroids that impacted the crust more recently than the molten days of the Earth.