this post was submitted on 06 Jun 2024
482 points (83.8% liked)

Privacy

17 readers
23 users here now

Privacy is the ability for an individual or group to seclude themselves or information about themselves, and thereby express themselves selectively.

Rules

  1. Don't do unto others what you don't want done unto you.
  2. No Porn, Gore, or NSFW content. Instant Ban.
  3. No Spamming, Trolling or Unsolicited Ads. Instant Ban.
  4. Stay on topic in a community. Please reach out to an admin to create a new community.

founded 2 years ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 2 points 2 months ago (2 children)

GPS receiver is trying to pick up at least two satelites

Four. GPS solves position in 4-dimensional space.

[–] [email protected] 1 points 2 months ago (1 children)

3 satellites for 2 dimensional space, 4 satellites gives you height as well (3 dimensional).

your wristwatch gives you your fourth dimension ;-)

[–] [email protected] 1 points 2 months ago (1 children)

GPS satelites are just fancy atomic wirstwatches hanging on Earth orbit

[–] [email protected] 1 points 2 months ago (1 children)

heh, this is true, but don't they still only give you a 3 dimensional location?

[–] [email protected] 0 points 2 months ago

but don't they still only give you a 3 dimensional location?

I'm trying to understand your question. They broadcast both their orbit parameters and their time.

[–] [email protected] 0 points 2 months ago (1 children)

No, more is preferred, but the way the signals are designed, some positioning slowly works with only two satellites.

Like old phones. Remember when GPS was slow and always a few meters off? Part of that was they were bad at or could not acquire more than two signals.

[–] [email protected] 0 points 2 months ago

No, more is preferred, but the way the signals are designed, some positioning slowly works with only two satellites.

s/signals/receivers

I guess receivers that also measure angle to satelites do have 4 constants with only 2 satellites to get 4d solution(or rather 2 solutions, one of which is in future, while other is in the past, not sure which one is correct). Or maybe try to do some wierd math shit with Doppler shift. I was talking about original(cheap and easy) way receivers were solving coords with 4 latencies.

If we are really pushing the limits here, then receiver that knows it doesn't move relative to Earth can get coords from one satelites, but this is just speculation. And it may require atomic clock.

Remember when GPS was slow and always a few meters off? Part of that was they were bad at or could not acquire more than two signals.

This doesn't sound like reason for it. Slow start? Receiver first needs to receive ephemerides and almanac to be able to solve position. Quoting wikipedia article on A-GPS:

Every GPS device requires orbital data about the satellites to calculate its position. The data rate of the satellite signal is only 50 bit/s, so downloading orbital information like ephemerides and the almanac directly from satellites typically takes a long time,

Almanac can be stored on device for a long time to be used later in next start. It's called warm start. Ephemerides don't last as long. Start when they aren't stale called hot start.

Now goes quote from another article

An ephemeris is valid for only four hours, while an almanac is valid–with little dilution of precision–for up to two weeks.

So bright minds thought "what if almanac and ephemeris" will be downloaded from the internet? And this is how A-GPS was born.

Now about precision. Few meters is normal precision for normal GPS. Getting better precision requires very scary math hiding behind Differential GPS and additional correctional data. Not that normal GPS doesn't have scary math.

Lastly, about two satelites: old phones had one antenna per band(and usually only one band), so they did require at least 4 satelites.