this post was submitted on 17 Jul 2024
556 points (97.8% liked)
Science Memes
11586 readers
635 users here now
Welcome to c/science_memes @ Mander.xyz!
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.
Rules
- Don't throw mud. Behave like an intellectual and remember the human.
- Keep it rooted (on topic).
- No spam.
- Infographics welcome, get schooled.
This is a science community. We use the Dawkins definition of meme.
Research Committee
Other Mander Communities
Science and Research
Biology and Life Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- !reptiles and [email protected]
Physical Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
Humanities and Social Sciences
Practical and Applied Sciences
- !exercise-and [email protected]
- [email protected]
- !self [email protected]
- [email protected]
- [email protected]
- [email protected]
Memes
Miscellaneous
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Until you prove that you can't prove that the system you made up works.
Nobody is practically concerned with the "incompleteness" aspect of Gödel's theorems. The unprovable statements are so pathological/contrived that it doesn't appear to suggest any practical statement might be unprovable. Consistency is obviously more important. Sufficiently weak systems may also not be limited by the incompleteness theorems, i.e. they can be proved both complete and consistent.
I think the statement "this system is consistent" is a practical statement that is unprovable in a sufficiently powerful consistent system.
Can you help me understand the tone of your text? To me it sounds kinda hostile as if what you said is some kind of gotcha.
Just explaining that the limitations of Gödel's theorems are mostly formal in nature. If they are applicable, the more likely case of incompleteness (as opposed to inconsistency) is not really a problem.